Displaying similar documents to “Pancyclic Cayley Graphs”

Integral Cayley Sum Graphs and Groups

Xuanlong Ma, Kaishun Wang (2016)

Discussiones Mathematicae Graph Theory

Similarity:

For any positive integer k, let Ak denote the set of finite abelian groups G such that for any subgroup H of G all Cayley sum graphs CayS(H, S) are integral if |S| = k. A finite abelian group G is called Cayley sum integral if for any subgroup H of G all Cayley sum graphs on H are integral. In this paper, the classes A2 and A3 are classified. As an application, we determine all finite Cayley sum integral groups.

Bounding neighbor-connectivity of Abelian Cayley graphs

Lynne L. Doty (2011)

Discussiones Mathematicae Graph Theory

Similarity:

For the notion of neighbor-connectivity in graphs whenever a vertex is subverted the entire closed neighborhood of the vertex is deleted from the graph. The minimum number of vertices whose subversion results in an empty, complete, or disconnected subgraph is called the neighbor-connectivity of the graph. Gunther, Hartnell, and Nowakowski have shown that for any graph, neighbor-connectivity is bounded above by κ. Doty has sharpened that bound in abelian Cayley graphs to approximately...

Discrepancy and eigenvalues of Cayley graphs

Yoshiharu Kohayakawa, Vojtěch Rödl, Mathias Schacht (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.

Some applications of pq-groups in graph theory

Geoffrey Exoo (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.

Factoring an odd abelian group by lacunary cyclic subsets

Sándor Szabó (2010)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.

Sum-dominant sets and restricted-sum-dominant sets in finite abelian groups

David B. Penman, Matthew D. Wells (2014)

Acta Arithmetica

Similarity:

We call a subset A of an abelian group G sum-dominant when |A+A| > |A-A|. If |A⨣A| > |A-A|, where A⨣A comprises the sums of distinct elements of A, we say A is restricted-sum-dominant. In this paper we classify the finite abelian groups according to whether or not they contain sum-dominant sets (respectively restricted-sum-dominant sets). We also consider how much larger the sumset can be than the difference set in this context. Finally, generalising work of Zhao, we provide asymptotic...

A cancellation property for the direct product of graphs

Richard H. Hammack (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.

On Two Generalized Connectivities of Graphs

Yuefang Sun, Fengwei Li, Zemin Jin (2018)

Discussiones Mathematicae Graph Theory

Similarity:

The concept of generalized k-connectivity κk(G), mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. The pendant tree-connectivity τk(G) was also introduced by Hager in 1985, which is a specialization of generalized k-connectivity but a generalization of the classical connectivity. Another generalized connectivity of a graph G, named k-connectivity κ′k(G), introduced by Chartrand et al. in 1984, is a generalization of the cut-version...