Displaying similar documents to “Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids”

Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids

Giulio Maier, Giorgio Novati (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material...

A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic structural models

Giulio Maier (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In the plastic constitutive laws the yield functions are assumed to be linear in the stresses, but generally non-linear in the internal variables which are non-decreasing measures of the contribution to plastic strains by each face of the yield surface. The structural models referred to for simplicity are aggregates of constant-strain finite elements. Influence of geometry changes on equilibrium are allowed for in a linearized way (the equilibrium equation contains a bilinear term in...

Unconditionally stable mid-point time integration in elastic-plastic dynamics

Alberto Corigliano, Umberto Perego (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The dynamic analysis of elastoplastic systems discretized by finite elements is dealt with. The material behaviour is described by a rather general internal variable model. The unknown fields are modelled in terms of suitable variables, generalized in Prager's sense. Time integrations are carried out by means of a generalized mid-point rule. The resulting nonlinear equations expressing dynamic equilibrium of the finite step problem are solved by means of a Newton-Raphson iterative scheme....