Displaying similar documents to “On Perelman’s functional with curvature corrections”

Curvature cones and the Ricci flow.

Thomas Richard (2012-2014)

Séminaire de théorie spectrale et géométrie

Similarity:

This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points. First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems. We then describe some recent results which give restrictions on general preserved conditions. ...

A survey on Inverse mean curvature flow in ROSSes

Giuseppe Pipoli (2017)

Complex Manifolds

Similarity:

In this survey we discuss the evolution by inverse mean curvature flow of star-shaped mean convex hypersurfaces in non-compact rank one symmetric spaces. We show similarities and differences between the case considered, with particular attention to how the geometry of the ambient manifolds influences the behaviour of the evolution. Moreover we try, when possible, to give an unified approach to the results present in literature.

The evolution of the scalar curvature of a surface to a prescribed function

Paul Baird, Ali Fardoun, Rachid Regbaoui (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.

Complete gradient Ricci solitons

Udo Simon (2015)

Colloquium Mathematicae

Similarity:

For complete gradient Ricci solitons we state necessary conditions for a non-trivial soliton structure in terms of intrinsic curvature invariants.