Displaying similar documents to “On the critical determinants of certain star bodies”

Method of infinite ascent applied on - ( 2 p · A 6 ) + B 3 = C 2

Susil Kumar Jena (2013)

Communications in Mathematics

Similarity:

In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for ( A , B , C ) of the Diophantine equation - ( 2 p · A 6 ) + B 3 = C 2 for any positive integral values of p when p 1 (mod 6) or p 2 (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.

On metric theory of Diophantine approximation for complex numbers

Zhengyu Chen (2015)

Acta Arithmetica

Similarity:

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if n = 2 ϕ ( n ) ψ ( n ) / n = . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition ψ ( n ) = ( n - 1 ) . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show...

Searching for Diophantine quintuples

Mihai Cipu, Tim Trudgian (2016)

Acta Arithmetica

Similarity:

We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most 5 . 441 · 10 26 Diophantine quintuples.

A note on the number of S -Diophantine quadruples

Florian Luca, Volker Ziegler (2014)

Communications in Mathematics

Similarity:

Let ( a 1 , , a m ) be an m -tuple of positive, pairwise distinct integers. If for all 1 i < j m the prime divisors of a i a j + 1 come from the same fixed set S , then we call the m -tuple S -Diophantine. In this note we estimate the number of S -Diophantine quadruples in terms of | S | = r .