Displaying similar documents to “Finite groups whose character degree graphs coincide with their prime graphs”

On prime labeling of union of tadpole graphs

Sanjaykumar K. Patel, Jayesh B. Vasava (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A graph G of order n is said to be a prime graph if its vertices can be labeled with the first n positive integers in such a way that the labels of any two adjacent vertices in G are relatively prime. If such a labeling on G exists then it is called a prime labeling. In this paper we seek prime labeling for union of tadpole graphs. We derive a necessary condition for the existence of prime labelings of graphs that are union of tadpole graphs and further show that the condition is also...

Finite groups with prime graphs of diameter 5

Ilya B. Gorshkov, Andrey V. Kukharev (2020)

Communications in Mathematics

Similarity:

In this paper we consider a prime graph of finite groups. In particular, we expect finite groups with prime graphs of maximal diameter.

2-halvable complete 4-partite graphs

Dalibor Fronček (1998)

Discussiones Mathematicae Graph Theory

Similarity:

A complete 4-partite graph K m , m , m , m is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K m , m , m , m with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K m , m , m , m with four odd parts (i.e., the graphs K m , m , m , n and K m , m , n , n ) all d-halvable graphs are known as well, except for the graphs K m , m , n , n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K m , m , m , m with three...

Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties

Izak Broere, Jozef Bucko, Peter Mihók (2002)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G [ V i ] i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if i and j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.

On generalized shift graphs

Christian Avart, Tomasz Łuczak, Vojtěch Rödl (2014)

Fundamenta Mathematicae

Similarity:

In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices are the k-element subsets of [n] = 1,...,n (or of an infinite cardinal κ ) and with two k-sets A = a , . . . , a k and B = b , . . . , b k joined if a < a = b < a = b < < a k = b k - 1 < b k . They determined the chromatic number of these graphs. In this paper we extend this definition and study the chromatic number of graphs defined similarly for other types of mutual position with respect to the underlying ordering. As a consequence of our result, we show the existence of a graph with...

Roughness in G -graphs

Bibi N. Onagh (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

G -graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding G -graphs. Then we introduce the notion of rough G -graphs and investigate some important properties of these graphs.

Rotation and jump distances between graphs

Gary Chartrand, Heather Gavlas, Héctor Hevia, Mark A. Johnson (1997)

Discussiones Mathematicae Graph Theory

Similarity:

A graph H is obtained from a graph G by an edge rotation if G contains three distinct vertices u,v, and w such that uv ∈ E(G), uw ∉ E(G), and H = G-uv+uw. A graph H is obtained from a graph G by an edge jump if G contains four distinct vertices u,v,w, and x such that uv ∈ E(G), wx∉ E(G), and H = G-uv+wx. If a graph H is obtained from a graph G by a sequence of edge jumps, then G is said to be j-transformed into H. It is shown that for every two graphs G and H of the same order (at least...

4-cycle properties for characterizing rectagraphs and hypercubes

Khadra Bouanane, Abdelhafid Berrachedi (2017)

Czechoslovak Mathematical Journal

Similarity:

A ( 0 , 2 ) -graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of ( 0 , λ ) -graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free ( 0 , 2 ) -graph. ( 0 , 2 ) -graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in ( 0 , λ ) -graphs and more specifically...

On 2-periodic graphs of a certain graph operator

Ivan Havel, Bohdan Zelinka (2001)

Discussiones Mathematicae Graph Theory

Similarity:

We deal with the graph operator P o w ¯ defined to be the complement of the square of a graph: P o w ¯ ( G ) = P o w ( G ) ¯ . Motivated by one of many open problems formulated in [6] we look for graphs that are 2-periodic with respect to this operator. We describe a class of bipartite graphs possessing the above mentioned property and prove that for any m,n ≥ 6, the complete bipartite graph K m , n can be decomposed in two edge-disjoint factors from . We further show that all the incidence graphs of Desarguesian finite projective...

The order of uniquely partitionable graphs

Izak Broere, Marietjie Frick, Peter Mihók (1997)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by V i has property i . If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.

Clopen graphs

Stefan Geschke (2013)

Fundamenta Mathematicae

Similarity:

A graph G on a topological space X as its set of vertices is clopen if the edge relation of G is a clopen subset of X² without the diagonal. We study clopen graphs on Polish spaces in terms of their finite induced subgraphs and obtain information about their cochromatic numbers. In this context we investigate modular profinite graphs, a class of graphs obtained from finite graphs by taking inverse limits. This continues the investigation of continuous colorings on Polish spaces and their...

Independent cycles and paths in bipartite balanced graphs

Beata Orchel, A. Paweł Wojda (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Bipartite graphs G = (L,R;E) and H = (L’,R’;E’) are bi-placeabe if there is a bijection f:L∪R→ L’∪R’ such that f(L) = L’ and f(u)f(v) ∉ E’ for every edge uv ∈ E. We prove that if G and H are two bipartite balanced graphs of order |G| = |H| = 2p ≥ 4 such that the sizes of G and H satisfy ||G|| ≤ 2p-3 and ||H|| ≤ 2p-2, and the maximum degree of H is at most 2, then G and H are bi-placeable, unless G and H is one of easily recognizable couples of graphs. This result implies easily that...

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Symmetries of embedded complete bipartite graphs

Erica Flapan, Nicole Lehle, Blake Mellor, Matt Pittluck, Xan Vongsathorn (2014)

Fundamenta Mathematicae

Similarity:

We characterize which automorphisms of an arbitrary complete bipartite graph K n , m can be induced by a homeomorphism of some embedding of the graph in S³.

Acyclic reducible bounds for outerplanar graphs

Mieczysław Borowiecki, Anna Fiedorowicz, Mariusz Hałuszczak (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G [ V i ] i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that u V i and v V j is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring....

Radio numbers for generalized prism graphs

Paul Martinez, Juan Ortiz, Maggy Tomova, Cindy Wyels (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted Z n , s , s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine...

Power Domination in Knödel Graphs and Hanoi Graphs

Seethu Varghese, A. Vijayakumar, Andreas M. Hinz (2018)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we study the power domination problem in Knödel graphs WΔ,2ν and Hanoi graphs [...] Hpn H p n . We determine the power domination number of W3,2ν and provide an upper bound for the power domination number of Wr+1,2r+1 for r ≥ 3. We also compute the k-power domination number and the k-propagation radius of [...] Hp2 H p 2 .