Displaying similar documents to “Some remarks concerning stabilization techniques for convection--diffusion problems”

Fast optical tracking of diffusion in time-dependent environment of brain extracellular space

Hrabě, Jan

Similarity:

An improved version of the Integrative Optical Imaging (IOI) method for diffusion measurements in a geometrically complex environment of the brain extracellular space has been developed. We present a theory for this Fast Optical Tracking Of Diffusion (FOTOD) which incorporates a time-dependent effective diffusion coefficient in homogeneous anisotropic media with time-dependent nonspecific linear clearance. FOTOD can be used to measure rapid changes in extracellular diffusion permeability...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates...

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few...