The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Viral infection model with diffusion and state-dependent delay: a case of logistic growth”

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

Similarity:

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to...

Logistic equations in tumour growth modelling

Urszula Foryś, Anna Marciniak-Czochra (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are...

Viral in-host infection model with two state-dependent delays: stability of continuous solutions

Kateryna Fedoryshyna, Alexander Rezounenko (2021)

Mathematica Bohemica

Similarity:

A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous...

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

Similarity:

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Delays induced in population dynamics

Eva Sánchez (2003)

Banach Center Publications

Similarity:

This paper provides an introduction to delay differential equations together with a short survey on state-dependent delay differential equations arising in population dynamics. Our main goal is to examine how the delays emerge from inner mechanisms in the model, how they induce oscillations and stability switches in the system and how the qualitative behaviour of a biological model depends on the form of the delay.

Time delays in proliferation and apoptosis for solid avascular tumour

Urszula Foryś, Mikhail Kolev (2003)

Banach Center Publications

Similarity:

The role of time delays in solid avascular tumour growth is considered. The model is formulated in terms of a reaction-diffusion equation and mass conservation law. Two main processes are taken into account-proliferation and apoptosis. We introduce time delay first in underlying apoptosis only and then in both processes. In the absence of necrosis the model reduces to one ordinary differential equation with one discrete delay which describes the changes of tumour radius. Basic properties...

An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective

H. R. Thieme, A. Tridane, Y. Kuang (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

A possible control strategy against the spread of an infectious disease is the treatment with antimicrobials that are given prophylactically to those that had contact with an infective person. The treatment continues until recovery or until it becomes obvious that there was no infection in the first place. The model considers susceptible, treated uninfected exposed, treated infected, (untreated) infectious, and recovered individuals. The overly optimistic assumptions are made that treated...

Blow-up results for some reaction-diffusion equations with time delay

Hongliang Wang, Yujuan Chen, Haihua Lu (2012)

Annales Polonici Mathematici

Similarity:

We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.

Influence of time delays on the Hahnfeldt et al. angiogenesis model dynamics

Marek Bodnar, Urszula Foryś (2009)

Applicationes Mathematicae

Similarity:

We study the influence of time delays on the dynamics of the general Hahnfeldt et al. model of an angiogenesis process. We analyse the dynamics of the system for different values of the parameter α which reflects the strength of stimulation of the vessel formation process. Time delays are introduced in three subprocesses: tumour growth, stimulation and inhibition of vessel formation (represented by endothelial cell dynamics). We focus on possible destabilisation of the positive steady...

Phytoplankton Dynamics: from the Behavior of Cells to a Transport Equation

R. Rudnicki, R. Wieczorek (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We present models of the dynamics of phytoplankton aggregates. We start with an individual-based model in which aggregates can grow, divide, joint and move randomly. Passing to infinity with the number of individuals, we obtain a model which describes the space-size distribution of aggregates. The density distribution function satisfies a non-linear transport equation, which contains terms responsible for the growth of phytoplankton aggregates, their fragmentation, coagulation, and...