Displaying similar documents to “Discrete random processes with memory: Models and applications”

Scaling of a random walk on a supercritical contact process

F. den Hollander, R. S. dos Santos (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the...

Excited random walk.

Benjamini, Itai, Wilson, David B. (2003)

Electronic Communications in Probability [electronic only]

Similarity:

Cluster continuous time random walks

Agnieszka Jurlewicz, Mark M. Meerschaert, Hans-Peter Scheffler (2011)

Studia Mathematica

Similarity:

In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly...

Scaling limit of the random walk among random traps on ℤd

Jean-Christophe Mourrat (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Attributing a positive value to each ∈ℤ, we investigate a nearest-neighbour random walk which is reversible for the measure with weights ( ), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that ≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof...

Perturbing transient random walk in a random environment with cookies of maximal strength

Elisabeth Bauernschubert (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a left-transient random walk in a random environment on that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Random walk in random environment with asymptotically zero perturbation

M.V. Menshikov, Andrew R. Wade (2006)

Journal of the European Mathematical Society

Similarity:

We give criteria for ergodicity, transience and null-recurrence for the random walk in random environment on + = { 0 , 1 , 2 , } , with reflection at the origin, where the random environment is subject to a vanishing perturbation. Our results complement existing criteria for random walks in random environments and for Markov chains with asymptotically zero drift, and are significantly different from the previously studied cases. Our method is based on a martingale technique—the method of Lyapunov functions. ...