Displaying similar documents to “The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices”

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

A generalisation of Amitsur's A-polynomials

Adam Owen, Susanne Pumplün (2021)

Communications in Mathematics

Similarity:

We find examples of polynomials f D [ t ; σ , δ ] whose eigenring ( f ) is a central simple algebra over the field F = C Fix ( σ ) Const ( δ ) .

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study moments of the difference D n ( x ) - x n n ! e - 1 / x concerning derangement polynomials D n ( x ) . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for x > 0 . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

Similarity:

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

A method to rigorously enclose eigenpairs of complex interval matrices

Castelli, Roberto, Lessard, Jean-Philippe

Similarity:

In this paper, a rigorous computational method to enclose eigenpairs of complex interval matrices is proposed. Each eigenpair x = ( λ , ) is found by solving a nonlinear equation of the form f ( x ) = 0 via a contraction argument. The set-up of the method relies on the notion of r a d i i p o l y n o m i a l s , which provide an efficient mean of determining a domain on which the contraction mapping theorem is applicable.

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Daniel Uzcátegui Contreras, Dardo Goyeneche, Ondřej Turek, Zuzana Václavíková (2021)

Communications in Mathematics

Similarity:

It is known that a real symmetric circulant matrix with diagonal entries d 0 , off-diagonal entries ± 1 and orthogonal rows exists only of order 2 d + 2 (and trivially of order 1 ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider...

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

On sets of polynomials whose difference set contains no squares

Thái Hoàng Lê, Yu-Ru Liu (2013)

Acta Arithmetica

Similarity:

Let q [ t ] be the polynomial ring over the finite field q , and let N be the subset of q [ t ] containing all polynomials of degree strictly less than N. Define D(N) to be the maximal cardinality of a set A N for which A-A contains no squares of polynomials. By combining the polynomial Hardy-Littlewood circle method with the density increment technology developed by Pintz, Steiger and Szemerédi, we prove that D ( N ) q N ( l o g N ) 7 / N .

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

G-matrices, J -orthogonal matrices, and their sign patterns

Frank J. Hall, Miroslav Rozložník (2016)

Czechoslovak Mathematical Journal

Similarity:

A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D 1 and D 2 such that A - T = D 1 A D 2 , where A - T denotes the transpose of the inverse of A . Denote by J = diag ( ± 1 ) a diagonal (signature) matrix, each of whose diagonal entries is + 1 or - 1 . A nonsingular real matrix Q is called J -orthogonal if Q T J Q = J . Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation...

On the value set of small families of polynomials over a finite field, II

Guillermo Matera, Mariana Pérez, Melina Privitelli (2014)

Acta Arithmetica

Similarity:

We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in q [ T ] of degree d for which s consecutive coefficients a = ( a d - 1 , . . . , a d - s ) are fixed. Our estimate asserts that ( d , s , a ) = μ d q + ( q 1 / 2 ) , where μ d : = r = 1 d ( ( - 1 ) r - 1 ) / ( r ! ) . We also prove that ( d , s , a ) = μ ² d q ² + ( q 3 / 2 ) , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of q [ T ] of degree d with s consecutive coefficients fixed as above. Finally, we show that ( d , 0 ) = μ ² d q ² + ( q ) , where ₂(d,0) denotes the average second moment for...