Displaying similar documents to “Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras”

Hom-Lie superalgebra structures on exceptional simple Lie superalgebras of vector fields

Liping Sun, Wende Liu (2017)

Open Mathematics

Similarity:

According to the classification by Kac, there are eight Cartan series and five exceptional Lie superalgebras in infinite-dimensional simple linearly compact Lie superalgebras of vector fields. In this paper, the Hom-Lie superalgebra structures on the five exceptional Lie superalgebras of vector fields are studied. By making use of the ℤ-grading structures and the transitivity, we prove that there is only the trivial Hom-Lie superalgebra structures on exceptional simple Lie superalgebras....

Deformations of Lie brackets: cohomological aspects

Marius Crainic, Ieke Moerdijk (2008)

Journal of the European Mathematical Society

Similarity:

We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.

The local integration of Leibniz algebras

Simon Covez (2013)

Annales de l’institut Fourier

Similarity:

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article...

Truncated Lie groups and almost Klein models

Georges Giraud, Michel Boyom (2004)

Open Mathematics

Similarity:

We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.

A classification of low dimensional multiplicative Hom-Lie superalgebras

Chunyue Wang, Qingcheng Zhang, Zhu Wei (2016)

Open Mathematics

Similarity:

We study a twisted generalization of Lie superalgebras, called Hom-Lie superalgebras. It is obtained by twisting the graded Jacobi identity by an even linear map. We give a complete classification of the complex multiplicative Hom-Lie superalgebras of low dimensions.

Hom-structures on semi-simple Lie algebras

Wenjuan Xie, Quanqin Jin, Wende Liu (2015)

Open Mathematics

Similarity:

A Hom-structure on a Lie algebra (g,[,]) is a linear map σ W g σ g which satisfies the Hom-Jacobi identity: [σ(x), [y,z]] + [σ(y), [z,x]] + [σ(z),[x,y]] = 0 for all x; y; z ∈ g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. This paper aims to determine explicitly all the Homstructures on the finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero. As a Hom-structure on a Lie algebra is not necessarily...