Displaying similar documents to “Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes”

Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations

Wonho Han, Kwangil Kim, Unhyok Hong (2023)

Applications of Mathematics

Similarity:

We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive...

An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws

Michael Breuss (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We discuss the occurrence of oscillations when using central schemes of the Lax-Friedrichs type (LFt), Rusanov's method and the staggered and non-staggered second order Nessyahu-Tadmor (NT) schemes. Although these schemes are monotone or TVD, respectively, oscillations may be introduced at local data extrema. The dependence of oscillatory properties on the numerical viscosity coefficient is investigated rigorously for the LFt schemes, illuminating also the properties of Rusanov's...

Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group

Yves Achdou, Italo Capuzzo-Dolcetta (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like h where is the mesh...

On the numerical approximation of first-order Hamilton-Jacobi equations

Rémi Abgrall, Vincent Perrier (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady problems.