Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
Wonho Han; Kwangil Kim; Unhyok Hong
Applications of Mathematics (2023)
- Volume: 68, Issue: 5, page 661-684
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHan, Wonho, Kim, Kwangil, and Hong, Unhyok. "Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations." Applications of Mathematics 68.5 (2023): 661-684. <http://eudml.org/doc/299520>.
@article{Han2023,
abstract = {We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive problems including nonconvex ones, the convergence and effectiveness of the adaptive WENO scheme are demonstrated.},
author = {Han, Wonho, Kim, Kwangil, Hong, Unhyok},
journal = {Applications of Mathematics},
keywords = {Hamilton-Jacobi equations; WENO scheme; adaptive WENO scheme; nonconvex Hamiltonian; convergence},
language = {eng},
number = {5},
pages = {661-684},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations},
url = {http://eudml.org/doc/299520},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Han, Wonho
AU - Kim, Kwangil
AU - Hong, Unhyok
TI - Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 661
EP - 684
AB - We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive problems including nonconvex ones, the convergence and effectiveness of the adaptive WENO scheme are demonstrated.
LA - eng
KW - Hamilton-Jacobi equations; WENO scheme; adaptive WENO scheme; nonconvex Hamiltonian; convergence
UR - http://eudml.org/doc/299520
ER -
References
top- Abgrall, R., 10.1137/040615997, SIAM J. Sci. Comput. 31 (2009), 2419-2446. (2009) Zbl1197.65167MR2520283DOI10.1137/040615997
- Amat, S., Ruiz, J., Shu, C.-W., 10.1137/18M1214937, SIAM J. Numer. Anal. 57 (2019), 1205-1237. (2019) Zbl1436.65095MR3956155DOI10.1137/18M1214937
- Bokanowski, O., Falcone, M., Sahu, S., 10.1137/140998482, SIAM J. Sci. Comput. 38 (2016), A171--A195. (2016) Zbl1407.65093MR3449908DOI10.1137/140998482
- Bryson, S., Levy, D., 10.1137/S0036142902408404, SIAM J. Numer. Anal. 41 (2003), 1339-1369. (2003) Zbl1050.65076MR2034884DOI10.1137/S0036142902408404
- Carlini, E., Ferretti, R., Russo, G., 10.1137/040608787, SIAM J. Sci. Comput. 27 (2005), 1071-1091. (2005) Zbl1105.65090MR2199921DOI10.1137/040608787
- Crandall, M. G., Lions, P.-L., 10.2307/2007396, Math. Comput. 43 (1984), 1-19. (1984) Zbl0556.65076MR0744921DOI10.2307/2007396
- Gottlieb, S., Shu, C.-W., Tadmor, E., 10.1137/S003614450036757X, SIAM Rev. 43 (2001), 89-112. (2001) Zbl0967.65098MR1854647DOI10.1137/S003614450036757X
- Henrick, A. K., Aslam, T. D., Powers, J. M., 10.1016/j.jcp.2005.01.023, J. Comput. Phys. 207 (2005), 542-567. (2005) Zbl1072.65114DOI10.1016/j.jcp.2005.01.023
- Huang, C., 10.1016/j.amc.2016.05.022, Appl. Math. Comput. 290 (2016), 21-32. (2016) Zbl1410.65313MR3523409DOI10.1016/j.amc.2016.05.022
- Jiang, G.-S., Peng, D., 10.1137/S106482759732455X, SIAM J. Sci. Comput. 21 (2000), 2126-2143. (2000) Zbl0957.35014MR1762034DOI10.1137/S106482759732455X
- Jiang, G.-S., Shu, C.-W., 10.1006/jcph.1996.0130, J. Comput. Phys. 126 (1996), 202-228. (1996) Zbl0877.65065MR1391627DOI10.1006/jcph.1996.0130
- Kim, K., Hong, U., Ri, K., Yu, J., 10.21136/AM.2021.0368-19, Appl. Math., Praha 66 (2021), 599-617. (2021) Zbl07396169MR4283305DOI10.21136/AM.2021.0368-19
- Kim, K., Li, Y., 10.1007/s10915-014-9955-5, J. Sci. Comput. 65 (2015), 110-137. (2015) Zbl1408.65053MR3394440DOI10.1007/s10915-014-9955-5
- Kurganov, A., Petrova, G., 10.1007/s10915-005-9033-0, J. Sci. Comput. 27 (2006), 323-333. (2006) Zbl1115.65093MR2285784DOI10.1007/s10915-005-9033-0
- Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T., 10.1137/040612002, SIAM J. Sci. Comput. 28 (2006), 2229-2247. (2006) Zbl1126.65075MR2272259DOI10.1137/040612002
- Liu, X.-D., Osher, S., Chan, T., 10.1006/jcph.1994.1187, J. Comput. Phys. 115 (1994), 200-212. (1994) Zbl0811.65076MR1300340DOI10.1006/jcph.1994.1187
- Oberman, A. M., Salvador, T., 10.1016/j.jcp.2014.12.039, J. Comput. Phys. 284 (2015), 367-388. (2015) Zbl1352.65422MR3303624DOI10.1016/j.jcp.2014.12.039
- Osher, S., Shu, C.-W., 10.1137/0728049, SIAM J. Numer. Anal. 28 (1991), 907-922. (1991) Zbl0736.65066MR1111446DOI10.1137/0728049
- Qiu, J.-M., Shu, C.-W., 10.1137/070687487, SIAM J. Sci. Comput. 31 (2008), 584-607. (2008) Zbl1186.65123MR2460790DOI10.1137/070687487
- Qiu, J.-X., Shu, C.-W., 10.1016/j.jcp.2004.10.003, J. Comput. Phys. 204 (2005), 82-99. (2005) Zbl1070.65078MR2121905DOI10.1016/j.jcp.2004.10.003
- Shu, C.-W., 10.1137/070679065, SIAM Rev. 51 (2009), 82-126. (2009) Zbl1160.65330MR2481112DOI10.1137/070679065
- Xu, Z., Shu, C.-W., 10.4310/MAA.2005.v12.n2.a6, Methods Appl. Anal. 12 (2005), 169-190. (2005) Zbl1119.65378MR2257526DOI10.4310/MAA.2005.v12.n2.a6
- Zhang, Y.-T., Shu, C.-W., 10.1137/S1064827501396798, SIAM J. Sci. Comput. 24 (2003), 1005-1030. (2003) Zbl1034.65051MR1950522DOI10.1137/S1064827501396798
- Zhu, J., Qiu, J., 10.1016/j.jcp.2013.07.030, J. Comput. Phys. 254 (2013), 76-92. (2013) Zbl1349.65364MR3143358DOI10.1016/j.jcp.2013.07.030
- Zhu, J., Qiu, J., 10.1016/j.jcp.2016.05.010, J. Comput. Phys. 318 (2016), 110-121. (2016) Zbl1349.65365MR3503990DOI10.1016/j.jcp.2016.05.010
- Zhu, J., Qiu, J., 10.1002/num.22133, Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. (2017) Zbl1371.65089MR3652179DOI10.1002/num.22133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.