WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation

Kwangil Kim; Kwanhung Ri; Wonho Han

Applications of Mathematics (2025)

  • Issue: 3, page 413-439
  • ISSN: 0862-7940

Abstract

top
A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior nearby singularities. A full account is given of the key role of parameters in WENO reconstruction and their selection. The latter half describes the adaptive stage on WENO approximation in convergence framework, which enables us to get the numerical solution to converge still achieving high-order accuracy for the nonconvex problems where the pure WENO scheme fails to converge. Detailed numerical experiments are performed to demonstrate the ability of the proposed numerical methods.

How to cite

top

Kim, Kwangil, Ri, Kwanhung, and Han, Wonho. "WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation." Applications of Mathematics (2025): 413-439. <http://eudml.org/doc/299990>.

@article{Kim2025,
abstract = {A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior nearby singularities. A full account is given of the key role of parameters in WENO reconstruction and their selection. The latter half describes the adaptive stage on WENO approximation in convergence framework, which enables us to get the numerical solution to converge still achieving high-order accuracy for the nonconvex problems where the pure WENO scheme fails to converge. Detailed numerical experiments are performed to demonstrate the ability of the proposed numerical methods.},
author = {Kim, Kwangil, Ri, Kwanhung, Han, Wonho},
journal = {Applications of Mathematics},
keywords = {Hamilton-Jacobi equation; WENO-Z scheme; nonlinear weight; adaptive approximation; convergence},
language = {eng},
number = {3},
pages = {413-439},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation},
url = {http://eudml.org/doc/299990},
year = {2025},
}

TY - JOUR
AU - Kim, Kwangil
AU - Ri, Kwanhung
AU - Han, Wonho
TI - WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 3
SP - 413
EP - 439
AB - A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior nearby singularities. A full account is given of the key role of parameters in WENO reconstruction and their selection. The latter half describes the adaptive stage on WENO approximation in convergence framework, which enables us to get the numerical solution to converge still achieving high-order accuracy for the nonconvex problems where the pure WENO scheme fails to converge. Detailed numerical experiments are performed to demonstrate the ability of the proposed numerical methods.
LA - eng
KW - Hamilton-Jacobi equation; WENO-Z scheme; nonlinear weight; adaptive approximation; convergence
UR - http://eudml.org/doc/299990
ER -

References

top
  1. Abedian, R., 10.22124/jmm.2021.20251.1765, J. Math. Model. 10 (2022), 279-297. (2022) Zbl1524.35139MR4436118DOI10.22124/jmm.2021.20251.1765
  2. Abedian, R., Salehi, R., 10.1016/j.camwa.2019.09.027, Comput. Math. Appl. 76 (2020), 2002-2020. (2020) Zbl1453.65207MR4070338DOI10.1016/j.camwa.2019.09.027
  3. Abgrall, R., 10.1137/040615997, SIAM J. Sci. Comput. 31 (2009), 2419-2446. (2009) Zbl1197.65167MR2520283DOI10.1137/040615997
  4. Bokanowski, O., Falcone, M., Sahu, S., 10.1137/140998482, SIAM J. Sci. Comput. 38 (2016), A171--A195. (2016) Zbl1407.65093MR3449908DOI10.1137/140998482
  5. Borges, R., Carmona, M., Costa, B., Don, W. S., 10.1016/j.jcp.2007.11.038, J. Comput. Phys. 227 (2008), 3191-3211. (2008) Zbl1136.65076MR2392730DOI10.1016/j.jcp.2007.11.038
  6. Bryson, S., Levy, D., 10.1137/S0036142902408404, SIAM J. Numer. Anal. 41 (2003), 1339-1369. (2003) Zbl1050.65076MR2034884DOI10.1137/S0036142902408404
  7. Carlini, E., Ferretti, R., Russo, G., 10.1137/040608787, SIAM J. Sci. Comput. 27 (2005), 1071-1091. (2005) Zbl1105.65090MR2199921DOI10.1137/040608787
  8. Crandall, M. G., Lions, P.-L., 10.1090/S0025-5718-1984-0744921-8, Math. Comput. 43 (1984), 1-19. (1984) Zbl0556.65076MR0744921DOI10.1090/S0025-5718-1984-0744921-8
  9. Gottlieb, S., Shu, C.-W., Tadmor, E., 10.1137/S003614450036757X, SIAM Rev. 43 (2001), 89-112. (2001) Zbl0967.65098MR1854647DOI10.1137/S003614450036757X
  10. Han, W., Kim, K., Hong, U., 10.21136/AM.2023.0264-22, Appl. Math., Praha 68 (2023), 661-684. (2023) Zbl07790540MR4645003DOI10.21136/AM.2023.0264-22
  11. Henrick, A. K., Aslam, T. D., Powers, J. M., 10.1016/j.jcp.2005.01.023, J. Comput. Phys. 207 (2005), 542-567. (2005) Zbl1072.65114DOI10.1016/j.jcp.2005.01.023
  12. Huang, C., 10.1016/j.amc.2016.05.022, Appl. Math. Comp. 290 (2016), 21-32. (2016) Zbl1410.65313MR3523409DOI10.1016/j.amc.2016.05.022
  13. Jiang, G.-S., Peng, D., 10.1137/S106482759732455X, SIAM J. Sci. Comput. 21 (2000), 2126-2143. (2000) Zbl0957.35014MR1762034DOI10.1137/S106482759732455X
  14. Jiang, Y.-Q., Zhou, S.-G., Zhang, X., Hu, Y.-G., 10.1016/j.apnum.2021.09.012, Appl. Numer. Math. 171 (2022), 353-368. (2022) Zbl1522.65145MR4318807DOI10.1016/j.apnum.2021.09.012
  15. Jin, S., Xin, Z., 10.1137/S0036142996314366, SIAM J. Numer. Anal. 35 (1998), 2385-2404. (1998) Zbl0921.65063MR1655852DOI10.1137/S0036142996314366
  16. Kim, K., Hong, U., Ri, K., Yu, J., 10.21136/AM.2021.0368-19, Appl. Math., Praha 66 (2021), 599-617. (2021) Zbl1554.65212MR4283305DOI10.21136/AM.2021.0368-19
  17. Kim, K., Li, Y., 10.1007/s10915-014-9955-5, J. Sci. Comput. 65 (2015), 110-137. (2015) Zbl1408.65053MR3394440DOI10.1007/s10915-014-9955-5
  18. Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T., 10.1137/040612002, SIAM J. Sci. Comput. 28 (2006), 2229-2247. (2006) Zbl1126.65075MR2272259DOI10.1137/040612002
  19. Oberman, A. M., Salvador, T., 10.1016/j.jcp.2014.12.039, J. Comput. Phys. 284 (2015), 367-388. (2015) Zbl1352.65422MR3303624DOI10.1016/j.jcp.2014.12.039
  20. Osher, S., Shu, C.-W., 10.1137/0728049, SIAM J. Numer. Anal. 28 (1991), 907-922. (1991) Zbl0736.65066MR1111446DOI10.1137/0728049
  21. Qiu, J., Shu, C.-W., 10.1016/j.jcp.2004.10.003, J. Comput. Phys. 204 (2005), 82-99. (2005) Zbl1070.65078MR2121905DOI10.1016/j.jcp.2004.10.003
  22. Qiu, J.-M., Shu, C.-W., 10.1137/070687487, SIAM J. Sci. Comput. 31 (2008), 584-607. (2008) Zbl1186.65123MR2460790DOI10.1137/070687487
  23. Samala, R., Biswas, B., 10.1007/s42967-020-00091-5, Commun. Appl. Math. Comput. 3 (2021), 481-496. (2021) Zbl1499.65429MR4303511DOI10.1007/s42967-020-00091-5
  24. Shu, C.-W., 10.1137/070679065, SIAM Rev. 51 (2009), 82-126. (2009) Zbl1160.65330MR2481112DOI10.1137/070679065
  25. Shu, C.-W., 10.1017/S0962492920000057, Acta Numerica 29 (2020), 701-762. (2020) Zbl07674567MR4189296DOI10.1017/S0962492920000057
  26. Xu, Z., Shu, C.-W., 10.4310/MAA.2005.v12.n2.a6, Methods Appl. Anal. 12 (2005), 169-190. (2005) Zbl1119.65378MR2257526DOI10.4310/MAA.2005.v12.n2.a6
  27. Zhang, Y.-T., Shu, C.-W., 10.1137/S1064827501396798, SIAM J. Sci. Comput. 24 (2003), 1005-1030. (2003) Zbl1034.65051MR1950522DOI10.1137/S1064827501396798
  28. Zhu, J., Qiu, J., 10.1016/j.jcp.2013.07.030, J. Comput. Phys. 254 (2013), 76-92. (2013) Zbl1349.65364MR3143358DOI10.1016/j.jcp.2013.07.030
  29. Zhu, J., Qiu, J., 10.1002/num.22133, Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. (2017) Zbl1371.65089MR3652179DOI10.1002/num.22133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.