The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Choquet integrals associated to Bessel capacities”

Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.

Soulaymane Korry (2002)

Revista Matemática Complutense

Similarity:

We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces F (R), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on F (R), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H (R).

Eigenfunctions of the Hardy-Littlewood maximal operator

Leonardo Colzani, Javier Pérez Lázaro (2010)

Colloquium Mathematicae

Similarity:

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.

Atomic decomposition on Hardy-Sobolev spaces

Yong-Kum Cho, Joonil Kim (2006)

Studia Mathematica

Similarity:

As a natural extension of L p Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.

A₁-regularity and boundedness of Calderón-Zygmund operators

Dmitry V. Rutsky (2014)

Studia Mathematica

Similarity:

The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded...

Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications

Xiaming Chen, Renjin Jiang, Dachun Yang (2016)

Analysis and Geometry in Metric Spaces

Similarity:

Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with...