Displaying similar documents to “On the Choquet integrals associated to Bessel capacities”

Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.

Soulaymane Korry (2002)

Revista Matemática Complutense

Similarity:

We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces F (R), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on F (R), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H (R).

Eigenfunctions of the Hardy-Littlewood maximal operator

Leonardo Colzani, Javier Pérez Lázaro (2010)

Colloquium Mathematicae

Similarity:

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.

Atomic decomposition on Hardy-Sobolev spaces

Yong-Kum Cho, Joonil Kim (2006)

Studia Mathematica

Similarity:

As a natural extension of L p Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.

A₁-regularity and boundedness of Calderón-Zygmund operators

Dmitry V. Rutsky (2014)

Studia Mathematica

Similarity:

The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded...

Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications

Xiaming Chen, Renjin Jiang, Dachun Yang (2016)

Analysis and Geometry in Metric Spaces

Similarity:

Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with...