Displaying similar documents to “MetaPost: PNG Output”

Linearization techniques for See PDF -control problems and dynamic programming principles in classical and See PDF -control problems

Dan Goreac, Oana-Silvia Serea (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The aim of the paper is to provide a linearization approach to the See PDF -control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating See PDF problems in continuous and lower semicontinuous...

Les types de données syntaxiques du système

Samir Farkh, Karim Nour (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

We give in this paper a purely syntactical definition of input and output types of system . We define the syntactical data types as input and output types. We show that any type with positive quantifiers is a syntactical data type and that an input type is an output type. We give some restrictions on the -elimination rule in order to prove that an output type is an input type.

Relaxation of singular functionals defined on Sobolev spaces

Hafedh Ben Belgacem (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we consider a Borel measurable function on the space of m × n matrices f : M m × n ¯ taking the value + , such that its rank-one-convex envelope R f is finite and satisfies for some fixed p > 1 : - c 0 R f ( F ) c ( 1 + F p ) for all F M m × n , where c , c 0 > 0 . Let Ø be a given regular bounded open domain of n . We define on W 1 , p ( Ø ; m ) the functional I ( u ) = Ø f ( u ( x ) ) d x . Then, under some technical restrictions on f , we show that the relaxed functional I ¯ for the weak topology of W 1 , p ( Ø ; m ) has the integral representation: I ¯ ( u ) = Ø Q [ R f ] ( u ( x ) ) d x , where for a given function g , Q g denotes...

Large deviations for independent random variables – Application to Erdös-Renyi's functional law of large numbers

Jamal Najim (2010)

ESAIM: Probability and Statistics

Similarity:

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis...

On ergodic problem for Hamilton-Jacobi-Isaacs equations

Piernicola Bettiol (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the asymptotic behavior of λ v λ as λ 0 + , where v λ is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) λ v λ + H ( x , D v λ ) = 0 , with H ( x , p ) : = min b B max a A { - f ( x , a , b ) · p - l ( x , a , b ) } . We discuss the cases in which the state of the system is required to stay in an -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain Ω n with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection...

The internal stabilization by noise of the linearized Navier-Stokes equation

Viorel Barbu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

One shows that the linearized Navier-Stokes equation in 𝒪 R d , d 2 , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V ( t , ξ ) = i = 1 N V i ( t ) ψ i ( ξ ) β ˙ i ( t ) , ξ 𝒪 , where { β i } i = 1 N are independent Brownian motions in a probability space and { ψ i } i = 1 N is a system of functions on 𝒪 with support in an arbitrary open subset 𝒪 0 𝒪 . The stochastic control input { V i } i = 1 N is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability...