Displaying similar documents to “Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source”

Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo (2023)

Archivum Mathematicum

Similarity:

This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

Remarks on blow up time for solutions of a nonlinear diffusion system with time dependent coefficients

Marras, M. (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35K55, 35K60. We investigate the blow-up of the solutions to a nonlinear parabolic system with Robin boundary conditions and time dependent coefficients. We derive sufficient conditions on the nonlinearities and the initial data in order to obtain explicit lower and upper bounds for the blow up time t*.

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

Similarity:

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

Similarity:

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Blow-up for a localized singular parabolic equation with weighted nonlocal nonlinear boundary conditions

Youpeng Chen, Baozhu Zheng (2015)

Annales Polonici Mathematici

Similarity:

This paper deals with the blow-up properties of positive solutions to a localized singular parabolic equation with weighted nonlocal nonlinear boundary conditions. Under certain conditions, criteria of global existence and finite time blow-up are established. Furthermore, when q=1, the global blow-up behavior and the uniform blow-up profile of the blow-up solution are described; we find that the blow-up set is the whole domain [0,a], including the boundary, in contrast to the case of...

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida, Tomomi Yokota (2023)

Archivum Mathematicum

Similarity:

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.