Displaying similar documents to “New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems”

The adaptation of the k -means algorithm to solving the multiple ellipses detection problem by using an initial approximation obtained by the DIRECT global optimization algorithm

Rudolf Scitovski, Kristian Sabo (2019)

Applications of Mathematics

Similarity:

We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse E is viewed as a Mahalanobis circle with center S , radius r , and some positive definite matrix Σ . A very efficient method for solving this problem is proposed. The method uses a modification of the k -means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers...

An adaptive s -step conjugate gradient algorithm with dynamic basis updating

Erin Claire Carson (2020)

Applications of Mathematics

Similarity:

The adaptive s -step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive s -step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of A , using a technique due to G. Meurant and...

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

Similarity:

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution...

A new approach to solving a quasilinear boundary value problem with p -Laplacian using optimization

Michaela Bailová, Jiří Bouchala (2023)

Applications of Mathematics

Similarity:

We present a novel approach to solving a specific type of quasilinear boundary value problem with p -Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea...

Uniform convergence of the greedy algorithm with respect to the Walsh system

Martin Grigoryan (2010)

Studia Mathematica

Similarity:

For any 0 < ϵ < 1, p ≥ 1 and each function f L p [ 0 , 1 ] one can find a function g L [ 0 , 1 ) with mesx ∈ [0,1): g ≠ f < ϵ such that its greedy algorithm with respect to the Walsh system converges uniformly on [0,1) and the sequence | c k ( g ) | : k s p e c ( g ) is decreasing, where c k ( g ) is the sequence of Fourier coefficients of g with respect to the Walsh system.

Seasonal time-series imputation of gap missing algorithm (STIGMA)

Eduardo Rangel-Heras, Pavel Zuniga, Alma Y. Alanis, Esteban A. Hernandez-Vargas, Oscar D. Sanchez (2023)

Kybernetika

Similarity:

This work presents a new approach for the imputation of missing data in weather time-series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm (STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of unknown data by averaging available data. We test the algorithm using data measured every 10 minutes over a period of 365 days during the year 2010; the variables include global irradiance, diffuse irradiance, ultraviolet irradiance,...

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan

Similarity:

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.