Displaying similar documents to “Riesz potentials and Sobolev-type inequalities in Orlicz-Morrey spaces of an integral form”

Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces

Takao Ohno, Tetsu Shimomura (2016)

Czechoslovak Mathematical Journal

Similarity:

We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type...

Musielak-Orlicz-Sobolev spaces on metric measure spaces

Takao Ohno, Tetsu Shimomura (2015)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness...

Fine behavior of functions whose gradients are in an Orlicz space

Jan Malý, David Swanson, William P. Ziemer (2009)

Studia Mathematica

Similarity:

For functions whose derivatives belong to an Orlicz space, we develop their "fine" properties as a generalization of the treatment found in [MZ] for Sobolev functions. Of particular importance is Theorem 8.8, which is used in the development in [MSZ] of the coarea formula for such functions.

An embedding theorem for Sobolev type functions with gradients in a Lorentz space

Alireza Ranjbar-Motlagh (2009)

Studia Mathematica

Similarity:

The purpose of this paper is to prove an embedding theorem for Sobolev type functions whose gradients are in a Lorentz space, in the framework of abstract metric-measure spaces. We then apply this theorem to prove absolute continuity and differentiability of such functions.

Bessel potentials in Orlicz spaces.

N. Aïssaoui (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

It is shown that Bessel potentials have a representation in term of measure when the underlying space is Orlicz. A comparison between capacities and Lebesgue measure is given and geometric properties of Bessel capacities in this space are studied. Moreover it is shown that if the capacity of a set is null, then the variation of all signed measures of this set is null when these measures are in the dual of an Orlicz-Sobolev space.