Musielak-Orlicz-Sobolev spaces on metric measure spaces

Takao Ohno; Tetsu Shimomura

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 435-474
  • ISSN: 0011-4642

Abstract

top
Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.

How to cite

top

Ohno, Takao, and Shimomura, Tetsu. "Musielak-Orlicz-Sobolev spaces on metric measure spaces." Czechoslovak Mathematical Journal 65.2 (2015): 435-474. <http://eudml.org/doc/270122>.

@article{Ohno2015,
abstract = {Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.},
author = {Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent},
language = {eng},
number = {2},
pages = {435-474},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Musielak-Orlicz-Sobolev spaces on metric measure spaces},
url = {http://eudml.org/doc/270122},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Musielak-Orlicz-Sobolev spaces on metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 435
EP - 474
AB - Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.
LA - eng
KW - Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent
UR - http://eudml.org/doc/270122
ER -

References

top
  1. Adamowicz, T., Harjulehto, P., Hästö, P., 10.7146/math.scand.a-20448, Math. Scand. 116 (2015), 5-22. (2015) MR3322604DOI10.7146/math.scand.a-20448
  2. Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory, Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996). (1996) MR1411441
  3. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  4. ssaoui, N. Aï, Another extension of Orlicz-Sobolev spaces to metric spaces, Abstr. Appl. Anal. 2004 (2004), 1-26. (2004) MR2058790
  5. ssaoui, N. Aï, 10.1155/S1085337502203024, Abstr. Appl. Anal. 7 (2002), 357-374. (2002) MR1939129DOI10.1155/S1085337502203024
  6. Björn, A., Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011). (2011) Zbl1231.31001MR2867756
  7. Bojarski, B., Hajłasz, P., Pointwise inequalities for Sobolev functions and some applications, Stud. Math. 106 (1993), 77-92. (1993) Zbl0810.46030MR1226425
  8. Cianchi, A., 10.1112/S0024610799007711, J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. (1999) Zbl0940.46015MR1721824DOI10.1112/S0024610799007711
  9. Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
  10. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., Corrections to: “The maximal function on variable L p spaces”, Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR2041952
  11. Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) MR2166733DOI10.1016/j.bulsci.2003.10.003
  12. Diening, L., Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245-253. (2004) Zbl1071.42014MR2057643
  13. Diening, L., 10.1002/mana.200310157, Math. Nachr. 268 (2004), 31-43. (2004) Zbl1065.46024MR2054530DOI10.1002/mana.200310157
  14. Diening, L., Harjulehto, P., Hästö, P., Ržička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) MR2790542
  15. Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
  16. Fan, X., 10.1016/j.jmaa.2011.08.022, J. Math. Anal. Appl. 386 (2012), 593-604. (2012) Zbl1270.35156MR2834769DOI10.1016/j.jmaa.2011.08.022
  17. Fan, X., Guan, C.-X., 10.1016/j.na.2010.03.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 163-175. (2010) Zbl1198.46010MR2645841DOI10.1016/j.na.2010.03.010
  18. Franchi, B., Lu, G., Wheeden, R. L., 10.1155/S1073792896000013, Int. Math. Res. Not. 1996 (1996), 1-14. (1996) Zbl0856.43006MR1383947DOI10.1155/S1073792896000013
  19. Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Variable exponent spaces on metric measure spaces, More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al. (2009) Zbl1189.46027
  20. Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. (2006) Zbl1100.31002MR2248828
  21. Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022
  22. Hajłasz, P., Kinnunen, J., 10.4171/RMI/246, Rev. Mat. Iberoam. 14 (1998), 601-622. (1998) Zbl1155.46306MR1681586DOI10.4171/RMI/246
  23. Hajłasz, P., Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages. (2000) Zbl0954.46022MR1683160
  24. Harjulehto, P., Hästö, P., 10.5209/rev_REMA.2004.v17.n1.16790, Rev. Mat. Complut. 17 (2004), 129-146. (2004) Zbl1072.46021MR2063945DOI10.5209/rev_REMA.2004.v17.n1.16790
  25. Harjulehto, P., Hästö, P., Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306. (2004) Zbl1079.46022MR2097234
  26. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., Sobolev capacity on the space W 1 , p ( · ) ( n ) , J. Funct. Spaces Appl. 1 (2003), 17-33. (2003) MR2011498
  27. Harjulehto, P., Hästö, P., Koskenoja, M., Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl. 5 (2007), 71-92. (2007) Zbl1143.31003MR2314780
  28. Harjulehto, P., Hästö, P., Latvala, V., 10.1007/s00209-006-0960-8, Math. Z. 254 (2006), 591-609. (2006) MR2244368DOI10.1007/s00209-006-0960-8
  29. Harjulehto, P., Hästö, P., Latvala, V., Lebesgue points in variable exponent Sobolev spaces on metric measure spaces, Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99. (2004) Zbl1199.46079MR2097234
  30. Harjulehto, P., Hästö, P., Martio, O., Fuglede's theorem in variable exponent Sobolev space, Collect. Math. 55 (2004), 315-324. (2004) Zbl1070.46023MR2099221
  31. Harjulehto, P., Hästö, P., Pere, M., 10.7169/facm/1229616443, Funct. Approximatio, Comment. Math. 36 (2006), 79-94. (2006) Zbl1140.46013MR2296640DOI10.7169/facm/1229616443
  32. Harjulehto, P., Hästö, P., Pere, M., Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30 (2005), 87-104. (2005) Zbl1072.42016MR2126796
  33. Heinonen, J., Lectures on Analysis on Metric Spaces, Universitext Springer, New York (2001). (2001) Zbl0985.46008MR1800917
  34. Heinonen, J., Koskela, P., 10.1007/BF02392747, Acta Math. 181 (1998), 1-61. (1998) Zbl0915.30018MR1654771DOI10.1007/BF02392747
  35. Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
  36. Kinnunen, J., Latvala, V., 10.4171/RMI/332, Rev. Mat. Iberoam. 18 (2002), 685-700. (2002) Zbl1037.46031MR1954868DOI10.4171/RMI/332
  37. Kinnunen, J., Martio, O., Choquet property for the Sobolev capacity in metric spaces, Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian. (2000) Zbl0992.46023MR1847522
  38. Kinnunen, J., Martio, O., The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382. (1996) Zbl0859.46023MR1404091
  39. Kokilashvili, V., Samko, S., 10.4171/RMI/398, Rev. Mat. Iberoam. 20 (2004), 493-515. (2004) Zbl1099.42021MR2073129DOI10.4171/RMI/398
  40. Kokilashvili, V., Samko, S., On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent, Z. Anal. Anwend. 22 (2003), 889-910. (2003) Zbl1040.42013MR2036935
  41. Lewis, J. L., 10.1080/03605309308820984, Commun. Partial Differ. Equations 18 (1993), 1515-1537. (1993) Zbl0796.35061MR1239922DOI10.1080/03605309308820984
  42. Maeda, F.-Y., Mizuta, Y., Ohno, T., 10.5186/aasfm.2010.3526, Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. (2010) Zbl1216.46025MR2731699DOI10.5186/aasfm.2010.3526
  43. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s10587-013-0063-8, Czech. Math. J. 63 (2013), 933-948. (2013) MR3165506DOI10.1007/s10587-013-0063-8
  44. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
  45. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., Mean continuity for potentials of functions in Musielak-Orlicz spaces, Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata. (2013) Zbl1303.46022MR3220454
  46. McShane, E. J., 10.1090/S0002-9904-1934-05978-0, Bull. Am. Math. Soc. 40 (1934), 837-842. (1934) Zbl0010.34606MR1562984DOI10.1090/S0002-9904-1934-05978-0
  47. Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.jmaa.2008.03.067, J. Math. Anal. Appl. 345 (2008), 70-85. (2008) Zbl1153.31002MR2422635DOI10.1016/j.jmaa.2008.03.067
  48. Mizuta, Y., Shimomura, T., 10.2748/tmj/1245849445, Tohoku Math. J. (2) 61 (2009), 225-240. (2009) Zbl1181.46026MR2541407DOI10.2748/tmj/1245849445
  49. Mizuta, Y., Shimomura, T., Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad., Ser. A 80 (2004), 96-99. (2004) Zbl1072.46506MR2075449
  50. Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
  51. Shanmugalingam, N., 10.4171/RMI/275, Rev. Mat. Iberoam. 16 (2000), 243-279. (2000) Zbl0974.46038MR1809341DOI10.4171/RMI/275
  52. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095
  53. Tuominen, H., Orlicz-Sobolev spaces on metric measure spaces, Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages. (2004) Zbl1068.46022MR2046571
  54. Ziemer, W. P., Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.