Musielak-Orlicz-Sobolev spaces on metric measure spaces
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 435-474
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topOhno, Takao, and Shimomura, Tetsu. "Musielak-Orlicz-Sobolev spaces on metric measure spaces." Czechoslovak Mathematical Journal 65.2 (2015): 435-474. <http://eudml.org/doc/270122>.
@article{Ohno2015,
abstract = {Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.},
author = {Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent},
language = {eng},
number = {2},
pages = {435-474},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Musielak-Orlicz-Sobolev spaces on metric measure spaces},
url = {http://eudml.org/doc/270122},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Musielak-Orlicz-Sobolev spaces on metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 435
EP - 474
AB - Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.
LA - eng
KW - Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent
UR - http://eudml.org/doc/270122
ER -
References
top- Adamowicz, T., Harjulehto, P., Hästö, P., 10.7146/math.scand.a-20448, Math. Scand. 116 (2015), 5-22. (2015) MR3322604DOI10.7146/math.scand.a-20448
- Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory, Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996). (1996) MR1411441
- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- ssaoui, N. Aï, Another extension of Orlicz-Sobolev spaces to metric spaces, Abstr. Appl. Anal. 2004 (2004), 1-26. (2004) MR2058790
- ssaoui, N. Aï, 10.1155/S1085337502203024, Abstr. Appl. Anal. 7 (2002), 357-374. (2002) MR1939129DOI10.1155/S1085337502203024
- Björn, A., Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011). (2011) Zbl1231.31001MR2867756
- Bojarski, B., Hajłasz, P., Pointwise inequalities for Sobolev functions and some applications, Stud. Math. 106 (1993), 77-92. (1993) Zbl0810.46030MR1226425
- Cianchi, A., 10.1112/S0024610799007711, J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. (1999) Zbl0940.46015MR1721824DOI10.1112/S0024610799007711
- Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., Corrections to: “The maximal function on variable spaces”, Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR2041952
- Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) MR2166733DOI10.1016/j.bulsci.2003.10.003
- Diening, L., Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 (2004), 245-253. (2004) Zbl1071.42014MR2057643
- Diening, L., 10.1002/mana.200310157, Math. Nachr. 268 (2004), 31-43. (2004) Zbl1065.46024MR2054530DOI10.1002/mana.200310157
- Diening, L., Harjulehto, P., Hästö, P., Ržička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) MR2790542
- Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
- Fan, X., 10.1016/j.jmaa.2011.08.022, J. Math. Anal. Appl. 386 (2012), 593-604. (2012) Zbl1270.35156MR2834769DOI10.1016/j.jmaa.2011.08.022
- Fan, X., Guan, C.-X., 10.1016/j.na.2010.03.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 163-175. (2010) Zbl1198.46010MR2645841DOI10.1016/j.na.2010.03.010
- Franchi, B., Lu, G., Wheeden, R. L., 10.1155/S1073792896000013, Int. Math. Res. Not. 1996 (1996), 1-14. (1996) Zbl0856.43006MR1383947DOI10.1155/S1073792896000013
- Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Variable exponent spaces on metric measure spaces, More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al. (2009) Zbl1189.46027
- Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. (2006) Zbl1100.31002MR2248828
- Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022
- Hajłasz, P., Kinnunen, J., 10.4171/RMI/246, Rev. Mat. Iberoam. 14 (1998), 601-622. (1998) Zbl1155.46306MR1681586DOI10.4171/RMI/246
- Hajłasz, P., Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages. (2000) Zbl0954.46022MR1683160
- Harjulehto, P., Hästö, P., 10.5209/rev_REMA.2004.v17.n1.16790, Rev. Mat. Complut. 17 (2004), 129-146. (2004) Zbl1072.46021MR2063945DOI10.5209/rev_REMA.2004.v17.n1.16790
- Harjulehto, P., Hästö, P., Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306. (2004) Zbl1079.46022MR2097234
- Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S., Sobolev capacity on the space , J. Funct. Spaces Appl. 1 (2003), 17-33. (2003) MR2011498
- Harjulehto, P., Hästö, P., Koskenoja, M., Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl. 5 (2007), 71-92. (2007) Zbl1143.31003MR2314780
- Harjulehto, P., Hästö, P., Latvala, V., 10.1007/s00209-006-0960-8, Math. Z. 254 (2006), 591-609. (2006) MR2244368DOI10.1007/s00209-006-0960-8
- Harjulehto, P., Hästö, P., Latvala, V., Lebesgue points in variable exponent Sobolev spaces on metric measure spaces, Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99. (2004) Zbl1199.46079MR2097234
- Harjulehto, P., Hästö, P., Martio, O., Fuglede's theorem in variable exponent Sobolev space, Collect. Math. 55 (2004), 315-324. (2004) Zbl1070.46023MR2099221
- Harjulehto, P., Hästö, P., Pere, M., 10.7169/facm/1229616443, Funct. Approximatio, Comment. Math. 36 (2006), 79-94. (2006) Zbl1140.46013MR2296640DOI10.7169/facm/1229616443
- Harjulehto, P., Hästö, P., Pere, M., Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30 (2005), 87-104. (2005) Zbl1072.42016MR2126796
- Heinonen, J., Lectures on Analysis on Metric Spaces, Universitext Springer, New York (2001). (2001) Zbl0985.46008MR1800917
- Heinonen, J., Koskela, P., 10.1007/BF02392747, Acta Math. 181 (1998), 1-61. (1998) Zbl0915.30018MR1654771DOI10.1007/BF02392747
- Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
- Kinnunen, J., Latvala, V., 10.4171/RMI/332, Rev. Mat. Iberoam. 18 (2002), 685-700. (2002) Zbl1037.46031MR1954868DOI10.4171/RMI/332
- Kinnunen, J., Martio, O., Choquet property for the Sobolev capacity in metric spaces, Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian. (2000) Zbl0992.46023MR1847522
- Kinnunen, J., Martio, O., The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382. (1996) Zbl0859.46023MR1404091
- Kokilashvili, V., Samko, S., 10.4171/RMI/398, Rev. Mat. Iberoam. 20 (2004), 493-515. (2004) Zbl1099.42021MR2073129DOI10.4171/RMI/398
- Kokilashvili, V., Samko, S., On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent, Z. Anal. Anwend. 22 (2003), 889-910. (2003) Zbl1040.42013MR2036935
- Lewis, J. L., 10.1080/03605309308820984, Commun. Partial Differ. Equations 18 (1993), 1515-1537. (1993) Zbl0796.35061MR1239922DOI10.1080/03605309308820984
- Maeda, F.-Y., Mizuta, Y., Ohno, T., 10.5186/aasfm.2010.3526, Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. (2010) Zbl1216.46025MR2731699DOI10.5186/aasfm.2010.3526
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s10587-013-0063-8, Czech. Math. J. 63 (2013), 933-948. (2013) MR3165506DOI10.1007/s10587-013-0063-8
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., Mean continuity for potentials of functions in Musielak-Orlicz spaces, Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata. (2013) Zbl1303.46022MR3220454
- McShane, E. J., 10.1090/S0002-9904-1934-05978-0, Bull. Am. Math. Soc. 40 (1934), 837-842. (1934) Zbl0010.34606MR1562984DOI10.1090/S0002-9904-1934-05978-0
- Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.jmaa.2008.03.067, J. Math. Anal. Appl. 345 (2008), 70-85. (2008) Zbl1153.31002MR2422635DOI10.1016/j.jmaa.2008.03.067
- Mizuta, Y., Shimomura, T., 10.2748/tmj/1245849445, Tohoku Math. J. (2) 61 (2009), 225-240. (2009) Zbl1181.46026MR2541407DOI10.2748/tmj/1245849445
- Mizuta, Y., Shimomura, T., Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad., Ser. A 80 (2004), 96-99. (2004) Zbl1072.46506MR2075449
- Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
- Shanmugalingam, N., 10.4171/RMI/275, Rev. Mat. Iberoam. 16 (2000), 243-279. (2000) Zbl0974.46038MR1809341DOI10.4171/RMI/275
- Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095
- Tuominen, H., Orlicz-Sobolev spaces on metric measure spaces, Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages. (2004) Zbl1068.46022MR2046571
- Ziemer, W. P., Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.