The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The descent algorithms for solving symmetric Pareto eigenvalue complementarity problem”

Monotonicity of the principal eigenvalue related to a non-isotropic vibrating string

Behrouz Emamizadeh, Amin Farjudian (2014)

Nonautonomous Dynamical Systems

Similarity:

In this paper we consider a parametric eigenvalue problem related to a vibrating string which is constructed out of two different materials. Using elementary analysis we show that the corresponding principal eigenvalue is increasing with respect to the parameter. Using a rearrangement technique we recapture a part of our main result, in case the difference between the densities of the two materials is sufficiently small. Finally, a simple numerical algorithm will be presented which will...

A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding.

Julián Fernández Bonder, Julio D. Rossi (2002)

Publicacions Matemàtiques

Similarity:

In this paper we study the Sobolev trace embedding W(Ω) → L (∂Ω), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues λ / +∞ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end...

A numerical method for solving inverse eigenvalue problems

Hua Dai (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Based on -like decomposition with column pivoting, a new and efficient numerical method for solving symmetric matrix inverse eigenvalue problems is proposed, which is suitable for both the distinct and multiple eigenvalue cases. A locally quadratic convergence analysis is given. Some numerical experiments are presented to illustrate our results.