The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure”

Stability under deformations of Hermite-Einstein almost Kähler metrics

Mehdi Lejmi (2014)

Annales de l’institut Fourier

Similarity:

On a 4 -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.

New hyper-Käahler structures on tangent bundles

Xuerong Qi, Linfen Cao, Xingxiao Li (2014)

Communications in Mathematics

Similarity:

Let ( M , g , J ) be an almost Hermitian manifold, then the tangent bundle T M carries a class of naturally defined almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) . In this paper we give conditions under which these almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle T 1 M , we obtain...

3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds

Gabriel Eduard Vîlcu (2010)

Annales Polonici Mathematici

Similarity:

We study 3-submersions from a QR-hypersurface of a quaternionic Kähler manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence of quaternionic submersions between quaternionic Kähler manifolds which are not locally hyper-Kähler.