The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Denjoy extension of the Riemann and McShane integrals”

Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion

Tuo-Yeong Lee (2005)

Mathematica Bohemica

Similarity:

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m -dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f [ 0 , 1 ] 2 and a continuous function F [ 0 , 1 ] 2 such that ( ) 0 x ( ) 0 y f ( u , v ) d v d u = ( ) 0 y ( ) 0 x f ( u , v ) d u d v = F ( x , y ) for all ( x , y ) [ 0 , 1 ] 2 .

The McShane, PU and Henstock integrals of Banach valued functions

Luisa Di Piazza, Valeria Marraffa (2002)

Czechoslovak Mathematical Journal

Similarity:

Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational...

On Denjoy-Dunford and Denjoy-Pettis integrals

José Gámez, José Mendoza (1998)

Studia Mathematica

Similarity:

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [ a , b ] c 0 which is not Pettis integrable on any subinterval in [a,b], while ʃ J f belongs to c 0 for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with...