Displaying similar documents to “Commuting Toeplitz operators on the pluriharmonic Bergman space”

Kernels of Toeplitz operators on the Bergman space

Young Joo Lee (2023)

Czechoslovak Mathematical Journal

Similarity:

A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.

Positive Schatten class Toeplitz operators on the ball

Boo Rim Choe, Hyungwoon Koo, Young Joo Lee (2008)

Studia Mathematica

Similarity:

On the harmonic Bergman space of the ball, we give characterizations for an arbitrary positive Toeplitz operator to be a Schatten class operator in terms of averaging functions and Berezin transforms.

Algebraic properties of Toeplitz operators on weighted Bergman spaces

Amila Appuhamy (2021)

Czechoslovak Mathematical Journal

Similarity:

We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.

Properties of two variables Toeplitz type operators

Elżbieta Król-Klimkowska, Marek Ptak (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The investigation of properties of generalized Toeplitz operators with respect to the pairs of doubly commuting contractions (the abstract analogue of classical two variable Toeplitz operators) is proceeded. We especially concentrate on the condition of existence such a non-zero operator. There are also presented conditions of analyticity of such an operator.

Some results on (strong) asymptotic Toeplitzness and Hankelness

Mehdi Nikpour (2019)

Czechoslovak Mathematical Journal

Similarity:

Based on the results in A. Feintuch (1989), this work sheds light upon some interesting properties of strongly asymptotically Toeplitz and Hankel operators, and relations between these two classes of operators. Indeed, among other things, two main results here are (a) vanishing Toeplitz and Hankel operators forms an ideal, and (b) finding the distance of a strongly asymptotically Toeplitz operator from the set of vanishing Toeplitz operators.

Asymmetric truncated Toeplitz operators equal to the zero operator

Joanna Jurasik, Bartosz Łanucha (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These operators are natural generalizations of truncated Toeplitz operators. In this paper we describe symbols of asymmetric truncated Toeplitz operators equal to the zero operator.