Tree-likeness of hereditarily equivalent continua
H. Cook (1970)
Fundamenta Mathematicae
Similarity:
H. Cook (1970)
Fundamenta Mathematicae
Similarity:
Hisao Kato (1988)
Compositio Mathematica
Similarity:
Acosta, Gerardo, Charatonik, Janusz J. (2004)
Mathematica Pannonica
Similarity:
J. Krasinkiewicz, Sam Nadler (1978)
Fundamenta Mathematicae
Similarity:
Janusz J. Charatonik, Włodzimierz J. Charatonik, Janusz R. Prajs (2003)
Colloquium Mathematicae
Similarity:
We investigate absolute retracts for hereditarily unicoherent continua, and also the continua that have the arc property of Kelley (i.e., the continua that satisfy both the property of Kelley and the arc approximation property). Among other results we prove that each absolute retract for hereditarily unicoherent continua (for tree-like continua, for λ-dendroids, for dendroids) has the arc property of Kelley.
James Davis, W. Ingram (1988)
Fundamenta Mathematicae
Similarity:
Wojciech Dębski, J. Heath, J. Mioduszewski (1992)
Fundamenta Mathematicae
Similarity:
It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...
C. Eberhart, J. Fugate (1971)
Fundamenta Mathematicae
Similarity:
W. Ingram (1972)
Fundamenta Mathematicae
Similarity:
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity: