The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On k -spaces and k R -spaces”

A note on transitively D -spaces

Liang-Xue Peng (2011)

Czechoslovak Mathematical Journal

Similarity:

In this note, we show that if for any transitive neighborhood assignment φ for X there is a point-countable refinement such that for any non-closed subset A of X there is some V such that | V A | ω , then X is transitively D . As a corollary, if X is a sequential space and has a point-countable w c s * -network then X is transitively D , and hence if X is a Hausdorff k -space and has a point-countable k -network, then X is transitively D . We prove that if X is a countably compact sequential space and...

k -systems, k -networks and k -covers

Jinjin Li, Shou Lin (2006)

Czechoslovak Mathematical Journal

Similarity:

The concepts of k -systems, k -networks and k -covers were defined by A. Arhangel’skiǐ in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among k -systems, k -networks and k -covers are further discussed and are established by m k -systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of m k -systems.

In search for Lindelöf C p ’s

Raushan Z. Buzyakova (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that if X is a first-countable countably compact subspace of ordinals then C p ( X ) is Lindelöf. This result is used to construct an example of a countably compact space X such that the extent of C p ( X ) is less than the Lindelöf number of C p ( X ) . This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.