A note on transitively -spaces
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 1049-1061
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPeng, Liang-Xue. "A note on transitively $D$-spaces." Czechoslovak Mathematical Journal 61.4 (2011): 1049-1061. <http://eudml.org/doc/196597>.
@article{Peng2011,
abstract = {In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement $\{\mathcal \{F\}\}$ such that for any non-closed subset $A$ of $X$ there is some $V\in \{\mathcal \{F\}\}$ such that $|V\cap A|\ge \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, \{\mathcal \{T\}\})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, \{\mathcal \{T\}\})$ is a transitively $D$-space.},
author = {Peng, Liang-Xue},
journal = {Czechoslovak Mathematical Journal},
keywords = {transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network; transitively ; sequential; discretely Lindelöf; -network},
language = {eng},
number = {4},
pages = {1049-1061},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on transitively $D$-spaces},
url = {http://eudml.org/doc/196597},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Peng, Liang-Xue
TI - A note on transitively $D$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1049
EP - 1061
AB - In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal {F}}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal {F}}$ such that $|V\cap A|\ge \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal {T}})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal {T}})$ is a transitively $D$-space.
LA - eng
KW - transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network; transitively ; sequential; discretely Lindelöf; -network
UR - http://eudml.org/doc/196597
ER -
References
top- Arhangel'skii, A. V., -spaces and covering properties, Topology Appl. 146-147 (2005), 437-449. (2005) Zbl1063.54013MR2107163
- Arhangel'skii, A. V., 10.1090/S0002-9939-04-07336-8, Proc. Am. Math. Soc. 132 (2004), 2163-2170. (2004) Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
- Arhangel'skii, A. V., A generic theorem in the theory of cardinal invariants of topological spaces, Commentat. Math. Univ. Carol. 36 (1995), 303-325. (1995) MR1357532
- Arhangel'skii, A. V., Buzyakova, R. Z., Addition theorems and D-spaces, Commentat. Math. Univ. Carol. 43 (2002), 653-663. (2002) Zbl1090.54017MR2045787
- Arhangel'skii, A. V., Buzyakova, R. Z., 10.1090/S0002-9939-99-04783-8, Proc. Am. Math. Soc. 127 (1999), 2449-2458. (1999) Zbl0930.54003MR1487356DOI10.1090/S0002-9939-99-04783-8
- Borges, C. R., Wehrly, A. C., A study of -spaces, Topol. Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
- Burke, D. K., Weak-bases and -spaces, Commentat. Math. Univ. Carol. 48 (2007), 281-289. (2007) Zbl1199.54065MR2338096
- Buzyakova, R. Z., On -property of strong -spaces, Commentat. Math. Univ. Carol. 43 (2002), 493-495. (2002) Zbl1090.54018MR1920524
- Douwen, E. K. van, Pfeffer, W. F., 10.2140/pjm.1979.81.371, Pac. J. Math. 81 (1979), 371-377. (1979) MR0547605DOI10.2140/pjm.1979.81.371
- Engelking, R., General Topology. Sigma Series in Pure Mathematics, Vol. 6, revised ed, Heldermann Berlin (1989). (1989) MR1039321
- Gruenhage, G., A note on -spaces, Topology Appl. 153 (2006), 2229-2240. (2006) Zbl1101.54029MR2238727
- Gruenhage, G., Generalized Metric Spaces, In: Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 423-501. (1984) Zbl0555.54015MR0776629
- Gruenhage, G., Submeta-Lindelöf implies transitively , Preprint.
- Gruenhage, G., Michael, E., Tanaka, Y., 10.2140/pjm.1984.113.303, Pac. J. Math. 113 (1984), 303-332. (1984) Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
- Gruenhage, G., 10.1090/conm/533/10502, Contemporary Mathematics 533 L. Babinkostova American Mathematical Society Providence (2011), 13-28. (2011) Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
- Guo, H. F., Junnila, H., On spaces which are linearly , Topology Appl. 157 (2010), 102-107. (2010) Zbl1180.54009MR2556084
- Lin, S., A note on -spaces, Commentat. Math. Univ. Carol. 47 (2006), 313-316. (2006) Zbl1150.54340MR2241534
- Lin, S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press Beijing (2002), Chinese. (2002) Zbl1004.54001MR1939779
- Lin, S., Tanaka, Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79-86. (1994) Zbl0817.54025MR1293119DOI10.1016/0166-8641(94)90101-5
- Pearl, E., Linearly Lindelöf problems, In: Open Problems in Topology II E. Pearl Elsevier Amsterdam (2007), 225-231. (2007) MR2367385
- Peng, L.-X., On spaces which are , linearly and transitively , Topology Appl. 157 (2010), 378-384. (2010) Zbl1179.54035MR2563288
- Peng, L.-X., 10.1016/j.topol.2006.06.003, Topology Appl. 154 (2007), 469-475. (2007) Zbl1110.54014MR2278697DOI10.1016/j.topol.2006.06.003
- Peng, L.-X., 10.1016/j.topol.2008.06.005, Topology Appl. 155 (2008), 1867-1874. (2008) Zbl1149.54015MR2445309DOI10.1016/j.topol.2008.06.005
- Peng, L.-X., A special point-countable family that makes a space to be a -space, Adv. Math. (China) 37 (2008), 724-728. (2008) MR2569541
- Peng, L.-X., 10.1016/j.topol.2007.01.020, Topology Appl. 154 (2007), 2223-2227. (2007) Zbl1133.54012MR2328005DOI10.1016/j.topol.2007.01.020
- Peng, L.-X., On weakly monotonically monolithic spaces, Commentat. Math. Univ. Carol. 51 (2010), 133-142. (2010) Zbl1224.54078MR2666085
- Peng, L.-X., A note on transitively and -spaces, Houston J. Math (to appear).
- Peng, L.-X., Tall, Franklin D., A note on linearly Lindelöf spaces and dual properties, Topol. Proc. 32 (2008), 227-237. (2008) Zbl1158.54008MR1500084
- Siwiec, F., 10.2140/pjm.1974.52.233, Pac. J. Math. 52 (1974), 233-245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
- L. A. Steen, Jr. J. A. Seebach, Counterexamples in Topology. 2nd edition, Springer New York-Heidelberg-Berlin (1978). (1978) MR0507446
- Tkachuk, V. V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840-846. (2009) Zbl1165.54009MR2492968DOI10.1016/j.topol.2008.11.001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.