A note on transitively D -spaces

Liang-Xue Peng

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 1049-1061
  • ISSN: 0011-4642

Abstract

top
In this note, we show that if for any transitive neighborhood assignment φ for X there is a point-countable refinement such that for any non-closed subset A of X there is some V such that | V A | ω , then X is transitively D . As a corollary, if X is a sequential space and has a point-countable w c s * -network then X is transitively D , and hence if X is a Hausdorff k -space and has a point-countable k -network, then X is transitively D . We prove that if X is a countably compact sequential space and has a point-countable w c s * -network, then X is compact. We point out that every discretely Lindelöf space is transitively D . Let ( X , τ ) be a space and let ( X , 𝒯 ) be a butterfly space over ( X , τ ) . If ( X , τ ) is Fréchet and has a point-countable w c s * -network (or is a hereditarily meta-Lindelöf space), then ( X , 𝒯 ) is a transitively D -space.

How to cite

top

Peng, Liang-Xue. "A note on transitively $D$-spaces." Czechoslovak Mathematical Journal 61.4 (2011): 1049-1061. <http://eudml.org/doc/196597>.

@article{Peng2011,
abstract = {In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement $\{\mathcal \{F\}\}$ such that for any non-closed subset $A$ of $X$ there is some $V\in \{\mathcal \{F\}\}$ such that $|V\cap A|\ge \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, \{\mathcal \{T\}\})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, \{\mathcal \{T\}\})$ is a transitively $D$-space.},
author = {Peng, Liang-Xue},
journal = {Czechoslovak Mathematical Journal},
keywords = {transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network; transitively ; sequential; discretely Lindelöf; -network},
language = {eng},
number = {4},
pages = {1049-1061},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on transitively $D$-spaces},
url = {http://eudml.org/doc/196597},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Peng, Liang-Xue
TI - A note on transitively $D$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1049
EP - 1061
AB - In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal {F}}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal {F}}$ such that $|V\cap A|\ge \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal {T}})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal {T}})$ is a transitively $D$-space.
LA - eng
KW - transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network; transitively ; sequential; discretely Lindelöf; -network
UR - http://eudml.org/doc/196597
ER -

References

top
  1. Arhangel'skii, A. V., D -spaces and covering properties, Topology Appl. 146-147 (2005), 437-449. (2005) Zbl1063.54013MR2107163
  2. Arhangel'skii, A. V., 10.1090/S0002-9939-04-07336-8, Proc. Am. Math. Soc. 132 (2004), 2163-2170. (2004) Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
  3. Arhangel'skii, A. V., A generic theorem in the theory of cardinal invariants of topological spaces, Commentat. Math. Univ. Carol. 36 (1995), 303-325. (1995) MR1357532
  4. Arhangel'skii, A. V., Buzyakova, R. Z., Addition theorems and D-spaces, Commentat. Math. Univ. Carol. 43 (2002), 653-663. (2002) Zbl1090.54017MR2045787
  5. Arhangel'skii, A. V., Buzyakova, R. Z., 10.1090/S0002-9939-99-04783-8, Proc. Am. Math. Soc. 127 (1999), 2449-2458. (1999) Zbl0930.54003MR1487356DOI10.1090/S0002-9939-99-04783-8
  6. Borges, C. R., Wehrly, A. C., A study of D -spaces, Topol. Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
  7. Burke, D. K., Weak-bases and D -spaces, Commentat. Math. Univ. Carol. 48 (2007), 281-289. (2007) Zbl1199.54065MR2338096
  8. Buzyakova, R. Z., On D -property of strong Σ -spaces, Commentat. Math. Univ. Carol. 43 (2002), 493-495. (2002) Zbl1090.54018MR1920524
  9. Douwen, E. K. van, Pfeffer, W. F., 10.2140/pjm.1979.81.371, Pac. J. Math. 81 (1979), 371-377. (1979) MR0547605DOI10.2140/pjm.1979.81.371
  10. Engelking, R., General Topology. Sigma Series in Pure Mathematics, Vol. 6, revised ed, Heldermann Berlin (1989). (1989) MR1039321
  11. Gruenhage, G., A note on D -spaces, Topology Appl. 153 (2006), 2229-2240. (2006) Zbl1101.54029MR2238727
  12. Gruenhage, G., Generalized Metric Spaces, In: Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 423-501. (1984) Zbl0555.54015MR0776629
  13. Gruenhage, G., Submeta-Lindelöf implies transitively D , Preprint. 
  14. Gruenhage, G., Michael, E., Tanaka, Y., 10.2140/pjm.1984.113.303, Pac. J. Math. 113 (1984), 303-332. (1984) Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
  15. Gruenhage, G., 10.1090/conm/533/10502, Contemporary Mathematics 533 L. Babinkostova American Mathematical Society Providence (2011), 13-28. (2011) Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
  16. Guo, H. F., Junnila, H., On spaces which are linearly D , Topology Appl. 157 (2010), 102-107. (2010) Zbl1180.54009MR2556084
  17. Lin, S., A note on D -spaces, Commentat. Math. Univ. Carol. 47 (2006), 313-316. (2006) Zbl1150.54340MR2241534
  18. Lin, S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press Beijing (2002), Chinese. (2002) Zbl1004.54001MR1939779
  19. Lin, S., Tanaka, Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79-86. (1994) Zbl0817.54025MR1293119DOI10.1016/0166-8641(94)90101-5
  20. Pearl, E., Linearly Lindelöf problems, In: Open Problems in Topology II E. Pearl Elsevier Amsterdam (2007), 225-231. (2007) MR2367385
  21. Peng, L.-X., On spaces which are D , linearly D and transitively D , Topology Appl. 157 (2010), 378-384. (2010) Zbl1179.54035MR2563288
  22. Peng, L.-X., 10.1016/j.topol.2006.06.003, Topology Appl. 154 (2007), 469-475. (2007) Zbl1110.54014MR2278697DOI10.1016/j.topol.2006.06.003
  23. Peng, L.-X., 10.1016/j.topol.2008.06.005, Topology Appl. 155 (2008), 1867-1874. (2008) Zbl1149.54015MR2445309DOI10.1016/j.topol.2008.06.005
  24. Peng, L.-X., A special point-countable family that makes a space to be a D -space, Adv. Math. (China) 37 (2008), 724-728. (2008) MR2569541
  25. Peng, L.-X., 10.1016/j.topol.2007.01.020, Topology Appl. 154 (2007), 2223-2227. (2007) Zbl1133.54012MR2328005DOI10.1016/j.topol.2007.01.020
  26. Peng, L.-X., On weakly monotonically monolithic spaces, Commentat. Math. Univ. Carol. 51 (2010), 133-142. (2010) Zbl1224.54078MR2666085
  27. Peng, L.-X., A note on transitively D and D -spaces, Houston J. Math (to appear). 
  28. Peng, L.-X., Tall, Franklin D., A note on linearly Lindelöf spaces and dual properties, Topol. Proc. 32 (2008), 227-237. (2008) Zbl1158.54008MR1500084
  29. Siwiec, F., 10.2140/pjm.1974.52.233, Pac. J. Math. 52 (1974), 233-245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  30. L. A. Steen, Jr. J. A. Seebach, Counterexamples in Topology. 2nd edition, Springer New York-Heidelberg-Berlin (1978). (1978) MR0507446
  31. Tkachuk, V. V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840-846. (2009) Zbl1165.54009MR2492968DOI10.1016/j.topol.2008.11.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.