Displaying similar documents to “Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion”

Stochastic integration of functions with values in a Banach space

J. M. A. M. van Neerven, L. Weis (2005)

Studia Mathematica

Similarity:

Let H be a separable real Hilbert space and let E be a real Banach space. In this paper we construct a stochastic integral for certain operator-valued functions Φ: (0,T) → ℒ(H,E) with respect to a cylindrical Wiener process W H ( t ) t [ 0 , T ] . The construction of the integral is given by a series expansion in terms of the stochastic integrals for certain E-valued functions. As a substitute for the Itô isometry we show that the square expectation of the integral equals the radonifying norm of an operator...

A note on maximal inequality for stochastic convolutions

Erika Hausenblas, Jan Seidler (2001)

Czechoslovak Mathematical Journal

Similarity:

Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution 0 t S ( t - s ) ψ ( s ) d W ( s ) driven by a Wiener process W in a Hilbert space in the case when the semigroup S ( t ) is of contraction type.

Set-valued stochastic integrals and stochastic inclusions in a plane

Władysław Sosulski (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We present the concepts of set-valued stochastic integrals in a plane and prove the existence of a solution to stochastic integral inclusions of the form z s , t φ s , t + 0 s 0 t F u , v ( z u , v ) d u d v + 0 s 0 t G u , v ( z u , v ) d w u , v

Stochastic affine evolution equations with multiplicative fractional noise

Bohdan Maslowski, J. Šnupárková (2018)

Applications of Mathematics

Similarity:

A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than 1 / 2 . Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.

A note on one-dimensional stochastic equations

Hans-Jürgen Engelbert (2001)

Czechoslovak Mathematical Journal

Similarity:

We consider the stochastic equation X t = x 0 + 0 t b ( u , X u ) d B u , t 0 , where B is a one-dimensional Brownian motion, x 0 is the initial value, and b [ 0 , ) × is a time-dependent diffusion coefficient. While the existence of solutions is well-studied for only measurable diffusion coefficients b , beyond the homogeneous case there is no general result on the uniqueness in law of the solution. The purpose of the present note is to give conditions on b ensuring the existence as well as the uniqueness in law of the solution. ...