Displaying similar documents to “Signpost systems and spanning trees of graphs”

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove...

On the (2,2)-domination number of trees

You Lu, Xinmin Hou, Jun-Ming Xu (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Let γ(G) and γ 2 , 2 ( G ) denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that ( 2 ( γ ( T ) + 1 ) ) / 3 γ 2 , 2 ( T ) 2 γ ( T ) . Moreover, we characterize all the trees achieving the equalities.

A note on the cubical dimension of new classes of binary trees

Kamal Kabyl, Abdelhafid Berrachedi, Éric Sopena (2015)

Czechoslovak Mathematical Journal

Similarity:

The cubical dimension of a graph G is the smallest dimension of a hypercube into which G is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with 2 n vertices, n 1 , is n . The 2-rooted complete binary tree of depth n is obtained from two copies of the complete binary tree of depth n by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice...

The induced paths in a connected graph and a ternary relation determined by them

Ladislav Nebeský (2002)

Mathematica Bohemica

Similarity:

By a ternary structure we mean an ordered pair ( X 0 , T 0 ) , where X 0 is a finite nonempty set and T 0 is a ternary relation on X 0 . By the underlying graph of a ternary structure ( X 0 , T 0 ) we mean the (undirected) graph G with the properties that X 0 is its vertex set and distinct vertices u and v of G are adjacent if and only if { x X 0 T 0 ( u , x , v ) } { x X 0 T 0 ( v , x , u ) } = { u , v } . A ternary structure ( X 0 , T 0 ) is said to be the B-structure of a connected graph G if X 0 is the vertex set of G and the following statement holds for all u , x , y X 0 : T 0 ( x , u , y ) if and only if u belongs to an...

The Wiener number of powers of the Mycielskian

Rangaswami Balakrishnan, S. Francis Raj (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

On the spectral radius of -shape trees

Xiaoling Ma, Fei Wen (2013)

Czechoslovak Mathematical Journal

Similarity:

Let A ( G ) be the adjacency matrix of G . The characteristic polynomial of the adjacency matrix A is called the characteristic polynomial of the graph G and is denoted by φ ( G , λ ) or simply φ ( G ) . The spectrum of G consists of the roots (together with their multiplicities) λ 1 ( G ) λ 2 ( G ) ... λ n ( G ) of the equation φ ( G , λ ) = 0 . The largest root λ 1 ( G ) is referred to as the spectral radius of G . A -shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by G ( l 1 , l 2 , ... , l 7 ) ( l 1 0 , l i 1 , i = 2 , 3 , ... , 7 ) a -shape tree such that...

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Similarity:

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

On locating and differentiating-total domination in trees

Mustapha Chellali (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let γ L ( G ) and γ D ( G ) be the minimum cardinality of a locating-total dominating set and a differentiating-total...

The tree property at both ω + 1 and ω + 2

Laura Fontanella, Sy David Friedman (2015)

Fundamenta Mathematicae

Similarity:

We force from large cardinals a model of ZFC in which ω + 1 and ω + 2 both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model ω + 2 even satisfies the super tree property.

Spanning caterpillars with bounded diameter

Ralph Faudree, Ronald Gould, Michael Jacobson, Linda Lesniak (1995)

Discussiones Mathematicae Graph Theory

Similarity:

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).