Displaying similar documents to “BMO-scale of distribution on n

Linear elliptic equations with BMO coefficients

Menita Carozza, Gioconda Moscariello, Antonia Passarelli di Napoli (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We prove an existence and uniqueness theorem for the Dirichlet problem for the equation div a x u = div f in an open cube Ω R N , when f belongs to some L p Ω , with p close to 2. Here we assume that the coefficient a belongs to the space BMO( Ω ) of functions of bounded mean oscillation and verifies the condition a x λ 0 > 0 for a.e. x Ω .

On the H p - L q boundedness of some fractional integral operators

Pablo Rocha, Marta Urciuolo (2012)

Czechoslovak Mathematical Journal

Similarity:

Let A 1 , , A m be n × n real matrices such that for each 1 i m , A i is invertible and A i - A j is invertible for i j . In this paper we study integral operators of the form T f ( x ) = k 1 ( x - A 1 y ) k 2 ( x - A 2 y ) k m ( x - A m y ) f ( y ) d y , k i ( y ) = j 2 j n / q i ϕ i , j ( 2 j y ) , 1 q i < , 1 / q 1 + 1 / q 2 + + 1 / q m = 1 - r , 0 r < 1 , and ϕ i , j satisfying suitable regularity conditions. We obtain the boundedness of T : H p ( n ) L q ( n ) for 0 < p < 1 / r and 1 / q = 1 / p - r . We also show that we can not expect the H p - H q boundedness of this kind of operators.

Singular integral characterization of nonisotropic generalized BMO spaces

Raquel Crescimbeni (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We extend a result of Coifman and Dahlberg [, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of H p spaces by singular integrals of n with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if T λ is the family of dilations in n induced by a matrix with a nonnegative eigenvalue, then there exist 2 n singular integral operators homogeneous with respect to the dilations...