Some remarks on variants of the Navier-Stokes equations
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Michael Wiegner (2003)
Banach Center Publications
Similarity:
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
A. Quarteroni, G. Sacchi Landriani, ... (1991)
Numerische Mathematik
Similarity:
G. Wittum (1989)
Numerische Mathematik
Similarity:
Jason S. Howell, Noel J. Walkington (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.
Hanek, Martin, Šístek, Jakub, Burda, Pavel
Similarity:
We deal with numerical simulation of incompressible flow governed by the Navier-Stokes equations. The problem is discretised using the finite element method, and the arising system of nonlinear equations is solved by Picard iteration. We explore the applicability of the Balancing Domain Decomposition by Constraints (BDDC) method to nonsymmetric problems arising from such linearisation. One step of BDDC is applied as the preconditioner for the stabilized variant of the biconjugate gradient...
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
Crispo, F., Maremonti, P. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
Chelkak, S., Koshelev, A., Oganesyan, L. (1997)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Zujin Zhang, Weijun Yuan, Yong Zhou (2019)
Applications of Mathematics
Similarity:
We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements.