The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mild law of large numbers and its consequences”

Genericity of nonsingular transformations with infinite ergodic index

J. Choksi, M. Nadkarni (2000)

Colloquium Mathematicae

Similarity:

It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense G δ set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...

Convergence of the averages and finiteness of ergodic power funtions in weighted L spaces.

Pedro Ortega Salvador (1991)

Publicacions Matemàtiques

Similarity:

Let (X, F, μ) be a finite measure space. Let T: X → X be a measure preserving transformation and let Af denote the average of Tf, k = 0, ..., n. Given a real positive function v on X, we prove that {Af} converges in the a.e. sense for every f in L(v dμ) if and only if inf v(Tx) > 0 a.e., and the same condition is equivalent to the finiteness of a related ergodic power function Pf for every f in L(v dμ). We apply this result to characterize, being T null-preserving, the finite...

On the uniform ergodic theorem in Banach spaces that do not contain duals

Vladimir Fonf, Michael Lin, Alexander Rubinov (1996)

Studia Mathematica

Similarity:

Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) ( I - T ) X = z X : s u p n k = 0 n T k z < . For X separable, we show that if T satisfies and is not uniformly ergodic, then ( I - T ) X ¯ contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible...

Large deviations for generic stationary processes

Emmanuel Lesigne, Dalibor Volný (2000)

Colloquium Mathematicae

Similarity:

Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.

Multiparameter pointwise ergodic theorems for Markov operators on L.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Similarity:

Let P1, ..., Pd be commuting Markov operators on L(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p &lt; ∞ the averages Anf = (n + 1)-d Σ0≤ni≤n P1