Displaying similar documents to “Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces”

Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space

Toka Diagana, George D. McNeal (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper is concerned with the spectral analysis for the class of linear operators A = D λ + X Y in non-archimedean Hilbert space, where D λ is a diagonal operator and X Y is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra.

Representation of bilinear forms in non-Archimedean Hilbert space by linear operators

Toka Diagana (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if φ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then φ is representable by a unique self-adjoint (possibly unbounded) operator A .