Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 4, page 695-705
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDiagana, Toka. "Representation of bilinear forms in non-Archimedean Hilbert space by linear operators." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 695-705. <http://eudml.org/doc/249834>.
@article{Diagana2006,
abstract = {The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if $\phi $ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then $\phi $ is representable by a unique self-adjoint (possibly unbounded) operator $A$.},
author = {Diagana, Toka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-Archimedean Hilbert space; non-Archimedean bilinear form; unbounded operator; unbounded bilinear form; bounded bilinear form; self-adjoint operator; non-Archimedean bilinear form; unbounded operator; unbounded bilinear form},
language = {eng},
number = {4},
pages = {695-705},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Representation of bilinear forms in non-Archimedean Hilbert space by linear operators},
url = {http://eudml.org/doc/249834},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Diagana, Toka
TI - Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 695
EP - 705
AB - The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if $\phi $ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then $\phi $ is representable by a unique self-adjoint (possibly unbounded) operator $A$.
LA - eng
KW - non-Archimedean Hilbert space; non-Archimedean bilinear form; unbounded operator; unbounded bilinear form; bounded bilinear form; self-adjoint operator; non-Archimedean bilinear form; unbounded operator; unbounded bilinear form
UR - http://eudml.org/doc/249834
ER -
References
top- Cassels J.W.S., Local Fields, London Mathematical Society, Student Texts 3, Cambridge Univ. Press, London, 1986. Zbl0595.12006MR0861410
- Basu S., Diagana T., Ramaroson F., A -adic version of Hilbert-Schmidt operators and applications, J. Anal. Appl. 2 (2004), 3 173-188. (2004) Zbl1077.47061MR2092641
- de Bivar-Weinholtz A., Lapidus M.L., Product formula for resolvents of normal operator and the modified Feynman integral, Proc. Amer. Math. Soc. 110 (1990), 2 449-460. (1990) MR1013964
- Diagana T., Towards a theory of some unbounded linear operators on -adic Hilbert spaces and applications, Ann. Math. Blaise Pascal 12 (2005), 1 205-222. (2005) Zbl1087.47061MR2126449
- Diagana T., Erratum to: “Towards a theory of some unbounded linear operators on -adic Hilbert spaces and applications", Ann. Math. Blaise Pascal 13 (2006), 105-106. (2006) MR2233015
- Diagana T., Bilinear forms on non-Archimedean Hilbert spaces, preprint, 2005.
- Diagana T., Fractional powers of the algebraic sum of normal operators, Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782. (2006) Zbl1092.47027MR2207493
- Diarra B., An operator on some Ultrametric Hilbert spaces, J. Anal. 6 (1998), 55-74. (1998) Zbl0930.47049MR1671148
- Diarra B., Geometry of the -adic Hilbert spaces, preprint, 1999.
- Johnson G.W., Lapidus M.L., The Feynman Integral and Feynman Operational Calculus, Oxford Univ. Press, Oxford, 2000. MR1771173
- Kato T., Perturbation Theory for Linear Operators, Springer, New York, 1966. Zbl0836.47009MR0203473
- Ochsenius H., Schikhof W.H., Banach spaces over fields with an infinite rank valuation, -adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293. Zbl0938.46056MR1703500
- van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978. Zbl0396.46061MR0512894
Citations in EuDML Documents
top- Dodzi Attimu, Toka Diagana, Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II
- Toka Diagana, George D. McNeal, Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space
- Dodzi Attimu, Toka Diagana, Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.