# Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space

Toka Diagana; George D. McNeal

Commentationes Mathematicae Universitatis Carolinae (2009)

- Volume: 50, Issue: 3, page 385-400
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topDiagana, Toka, and McNeal, George D.. "Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 385-400. <http://eudml.org/doc/33322>.

@article{Diagana2009,

abstract = {The paper is concerned with the spectral analysis for the class of linear operators $A = D_\lambda + X \otimes Y$ in non-archimedean Hilbert space, where $D_\lambda $ is a diagonal operator and $X \otimes Y$ is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra.},

author = {Diagana, Toka, McNeal, George D.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {spectral analysis; diagonal operator; rank one operator; eigenvalue; spectrum; non-archimedean Hilbert space; non-Archimedean Hilbert space; spectral analysis; diagonal operator; rank one operator},

language = {eng},

number = {3},

pages = {385-400},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space},

url = {http://eudml.org/doc/33322},

volume = {50},

year = {2009},

}

TY - JOUR

AU - Diagana, Toka

AU - McNeal, George D.

TI - Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2009

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 50

IS - 3

SP - 385

EP - 400

AB - The paper is concerned with the spectral analysis for the class of linear operators $A = D_\lambda + X \otimes Y$ in non-archimedean Hilbert space, where $D_\lambda $ is a diagonal operator and $X \otimes Y$ is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra.

LA - eng

KW - spectral analysis; diagonal operator; rank one operator; eigenvalue; spectrum; non-archimedean Hilbert space; non-Archimedean Hilbert space; spectral analysis; diagonal operator; rank one operator

UR - http://eudml.org/doc/33322

ER -

## References

top- Basu S., Diagana T., Ramaroson F., A $p$-adic version of Hilbert-Schmidt operators and applications, J. Anal. Appl. 2 (2004), no. 3, 173--188. Zbl1077.47061MR2092641
- Attimu D., Diagana T., Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 431--442. MR2374125
- Diagana T., 10.5802/ambp.203, Ann. Math. Blaise Pascal 12 (2005), no. 1, 205--222. Zbl1087.47061MR2126449DOI10.5802/ambp.203
- Diagana T., 10.5802/ambp.217, Ann. Math. Blaise Pascal 13 (2006), 105--106. MR2233015DOI10.5802/ambp.217
- Diagana T., Non-Archimedean Linear Operators and Applications, Nova Science Publishers, Huntington, NY, 2007. Zbl1112.47060MR2294736
- Diagana T., Representation of bilinear forms in non-archimedean Hilbert space by linear operators, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 695--705. MR2337423
- Diagana T., An Introduction to Classical and $p$-adic Theory of Linear Operators and Applications, Nova Science Publishers, New York, 2006. Zbl1118.47323MR2269328
- Diarra B., An operator on some ultrametric Hilbert spaces, J. Analysis 6 (1998), 55--74. Zbl0930.47049MR1671148
- Diarra B., Geometry of the $p$-adic Hilbert spaces, preprint, 1999.
- Fois C., Jung I.B., Ko E., Pearcy C., 10.1016/j.jfa.2007.09.007, J. Funct. Anal. 253 (2008), 628--646. MR2370093DOI10.1016/j.jfa.2007.09.007
- Ionascu E., 10.1007/BF01203323, Integral Equations Operator Theory 39 (2001), 421--440. Zbl0979.47012MR1829279DOI10.1007/BF01203323
- Keller H.A., Ochsenius H., Bounded operators on non-archimedean orthomodular spaces, Math. Slovaca 45 (1995), no. 4, 413--434. Zbl0855.46049MR1387058
- Ochsenius H., Schikhof W.H., Banach spaces over fields with an infinite rank valuation, -adic Functional Analysis (Poznan, 1998), Lecture Notes in Pure and Appl. Mathematics, 207, Marcel Dekker, New York, 1999, pp. 233–293. Zbl0938.46056MR1703500
- van Rooij A.C.M., Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978. Zbl0396.46061MR0512894

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.