Mathematical and computational aspects of solidification of pure substances.
Beneš, M. (2001)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Beneš, M. (2001)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Colli, P., Gilardi, G., Grasselli, M., Schimperna, G. (2001)
Portugaliae Mathematica. Nova Série
Similarity:
Gianni Gilardi (2004)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
We deal with a Penrose-Fife type model for phase transition. We assume a rather general constitutive low for the heat flux and treat the Dirichlet and Neumann boundary condition for the temperature. Some of our proofs apply to different types of boundary conditions as well and improve some results existing in the literature.
A. Visintin (1998)
Bollettino dell'Unione Matematica Italiana
Similarity:
Le transizioni di fase si presentano in svariati processi fisici: un esempio tipico è la transizione solido-liquido. Il classico modello matematico, noto come , tiene conto solo dello scambio del calore latente e della diffusione termica nelle fasi. Si tratta di un problema di frontiera libera, poiché l'evoluzione dell'interfaccia solido liquido è una delle incognite. In questo articolo si rivedono le formulazioni forte e debole di tale problema, e quindi si considerano alcune generalizzazioni...
Zhu, Peicheng
Similarity:
We investigate a new phase-field model which describes martensitic phase transitions, driven by material forces, in solid materials, e.g., shape memory alloys. This model is a nonlinear degenerate parabolic equation of second order, its principal part is not in divergence form in multi-dimensional case. We prove the existence of viscosity solutions to an initial-boundary value problem for this model.
Giulio Schimperna (2000)
Applications of Mathematics
Similarity:
A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to...