Introduction to the models of phase transitions

A. Visintin

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 1, page 1-47
  • ISSN: 0392-4041

How to cite

top

Visintin, A.. "Introduction to the models of phase transitions." Bollettino dell'Unione Matematica Italiana 1-B.1 (1998): 1-47. <http://eudml.org/doc/196036>.

@article{Visintin1998,
author = {Visintin, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Stefan problem; kinetic undercooling; phase relaxation; crystallization; phase transition; hyperbolic Stefan problem; vectorial Stefan problem; nucleation; mean curvature flows; hysteresis; list of references},
language = {eng},
month = {2},
number = {1},
pages = {1-47},
publisher = {Unione Matematica Italiana},
title = {Introduction to the models of phase transitions},
url = {http://eudml.org/doc/196036},
volume = {1-B},
year = {1998},
}

TY - JOUR
AU - Visintin, A.
TI - Introduction to the models of phase transitions
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/2//
PB - Unione Matematica Italiana
VL - 1-B
IS - 1
SP - 1
EP - 47
LA - eng
KW - Stefan problem; kinetic undercooling; phase relaxation; crystallization; phase transition; hyperbolic Stefan problem; vectorial Stefan problem; nucleation; mean curvature flows; hysteresis; list of references
UR - http://eudml.org/doc/196036
ER -

References

top
  1. ABRAHAM, F. F., Homogeneous Nucleation Theory, Academic Press, New York (1974). 
  2. ALEXIADES, V.- SOLOMON, A. D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC (1993). 
  3. ALLEN, S. M.- CAHN, J. W., A microscopic theory for antiphase motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. 
  4. ALMGREN, F., Existence and Regularity Almost Everywhere of Elliptic Variational Problems with Constraints, Memoirs A.M.S., 165 (1976). Zbl0327.49043MR420406
  5. ALMGREN, F.- TAYLOR, J. E.- WANG, L., Curvature-driven flows: a variational approach, S.I.A.M. J. Contr. Optimiz., 31 (1993), 387-437. Zbl0783.35002MR1205983
  6. ALMGREN, F.- WANG, L., Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, J. Geom. Anal. (to appear). Zbl0981.74041MR1758583
  7. ALT, H. W.- CAFFARELLI, L., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. Zbl0449.35105MR618549
  8. ALT, H. W.- PAWLOW, I., A mathematical model of dynamics of non-isothermal phase separation, Physica D, 59 (1992), 389-416 Zbl0763.58031MR1192751
  9. ATHANASSOPOULOS, I.- CAFFARELLI, L.A.- SALSA, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434 Zbl0853.35049MR1394964
  10. ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). Zbl0891.35164
  11. ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Degenerate phase transition problems of parabolic type: smoothness of the front, Preprint, Princeton (1996). Zbl0924.35197
  12. ATTHEY, D. R., A finite difference scheme for melting problems, J. Inst. Math. Appl., 13 (1974), 353-366. MR351295
  13. BAIOCCHI, C., Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. Zbl0258.76069MR408443
  14. BAIOCCHI, C.- CAPELO, A., Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester (1983). Zbl0551.49007MR745619
  15. BARLES, G., Remark on a flame propagation model, Rapport I.N.R.I.A., 464 (1985). 
  16. BÉNILAN, PH., Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972). 
  17. BERGER, A. E.- BRÉZIS, H.- ROGERS, J. W., A numerical method for solving the problem u t - Δ f u = 0 , R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. Zbl0426.65052MR555381
  18. BERGER, A. E.- ROGERS, J. W., Some properties of the nonlinear semigroup for the problem u t - Δ f u = 0 , Nonlinear Analysis, T.M.A., 8 (1984), 909-939. Zbl0557.35129MR753767
  19. BERMUDEZ, A.- SAGUEZ, C., Mathematical formulation and numerical solution of an alloy solidification problem, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 237-247. Zbl0506.65043
  20. BEURLING, A., On free boundary problems for the Laplace equation, Advanced Study Seminars, 1 (1957), 248-263. Zbl0099.08302
  21. BLOWEY, J. F.- ELLIOTT, C. M., The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy, Euro J. App. Math., 2 (1991), 233-280. Zbl0797.35172MR1123143
  22. BOSSAVIT, A., Stefan models for eddy currents in steel, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 349-364. Zbl0506.65044
  23. BOSSAVIT, A., Free boundaries in induction heating, Control Cybernetics, 14 (1985), 69-96. Zbl0615.35086
  24. BOSSAVIT, A., Mixed methods for a vectorial Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN - J. SPREKELS, eds.), Longman, Harlow (1990), pp. 25-37. Zbl0724.65118MR1077030
  25. BOSSAVIT, A., Électromagnétisme, en vue de la modélisation, Springer, Paris (1993). Zbl0787.65090MR1616583
  26. BOSSAVIT, A.- DAMLAMIAN, A., Homogenization of the Stefan problem and application to composite magnetic media, I.M.A. J. Appl. Math., 27 (1981), 319-334. Zbl0468.35053MR633807
  27. BOSSAVIT, A.- DAMLAMIAN, A.- FRE ?MOND (eds.), M., Free Boundary Problems: Theory and Applications, Pitman, Boston (1985). 
  28. BOSSAVIT, A.- VÉRITÉ, J. C., A mixed FEM-BIEM method to solve eddy currents problems, I.E.E.E. Trans. Magn.MAG-18 (1982), 431-435. 
  29. BRAKKE, K. A., The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton (1978). Zbl0386.53047MR485012
  30. BRÉZIS, H., On some degenerate nonlinear parabolic equations, in: Nonlinear Functional Analysis (F. E. BROWDER, ed.). Proc. Symp. Pure Math., XVIII. A.M.S., Providence (1970), pp. 28-38. Zbl0231.47034MR273468
  31. BRÉZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam (1973). Zbl0252.47055MR348562
  32. BRICE, J. C., The Growth of Crystals from Liquids, North-Holland, Amsterdam (1973). 
  33. BROKATE, M.- SPREKELS, J., Hysteresis and Phase Transitions, Springer, Heidelberg (1996). Zbl0951.74002MR1411908
  34. G. BUTTAZZO - A. VISINTIN (eds.), Motion by Mean Curvature and Related Topics, De Gruyter, Berlin (1994). Zbl0794.00019MR1277387
  35. CAFFARELLI, L. A., The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. Zbl0386.35046MR454350
  36. CAFFARELLI, L. A., Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. Zbl0393.35064MR466965
  37. CAFFARELLI, L. A.- EVANS, L. C., Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. Zbl0516.35080MR683353
  38. CAFFARELLI, L. A.- FRIEDMAN, A., Continuity of the temperature in the Stefan prob- lem, Indiana Univ. Math. J., 28 (1979), 53-70. Zbl0406.35032MR523623
  39. CAGINALP, G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. Zbl0608.35080MR816623
  40. CAGINALP, G., Stefan and Hele-Shaw type models as asymptotic limits of phase field equations,, Pys. Rev. A, 39 (1989), 5887-5896. Zbl1027.80505MR998924
  41. CAGINALP, G., The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, I.M.A. J. Appl. Math., 44 (1990), 77-94. Zbl0712.35114MR1044256
  42. CAGINALP, G.- XIE, W., Phase field and sharp-interface alloy models, Phys. Rev. E, 48 (1993), 1897-1909 MR1377919
  43. CAHN, J. W., Theory of crystal growth and interface motion in crystalline materials, Acta Metall., 8 (1960), 554-562. 
  44. CAHN, J. W., On spinodal decomposition, Acta Metall., 9 (1961), 795-801. 
  45. CAHN, J. W.- HILLIARD, J. E., Free energy of a nonuniform system. I. Interfacial free energy. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 28 (1957), 258-267; 31 (1959), 688-699. 
  46. CAHN, J. W.- TAYLOR, J. E., Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063. 
  47. CANNON, J. R., The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park (1984). Zbl0567.35001MR747979
  48. CANNON, J. R.- DIBENEDETTO, E., The steady state Stefan problem with convection, with mixed temperature and non-linear heat flux boundary conditions, in: Free Boundary Problems (E. MAGENES, ed.), Istituto di Alta Matematica, Roma (1980), pp. 231-266. Zbl0493.76088MR630724
  49. CANNON, J. R.- HILL, C. D., On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. Zbl0167.10504MR225013
  50. J. M. CHADAM - H. RASMUSSEN (eds.), Emerging Applications in Free Boundary Problems, Longman, Harlow (1993). MR1216352
  51. J. M. CHADAM - H. RASMUSSEN (eds.) Free Boundary Problems Involving Solids, Longman, Harlow (1993). MR1216392
  52. J. M. CHADAM - H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow (1993). MR1216373
  53. CHALMERS, B., Principles of Solidification, Wiley, New York (1964). 
  54. CHEN, X.- REITICH, F., Local existence and uniqueness of solutions of the Stefan prob- lem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 154 (1992), 350-362. Zbl0761.35113MR1151039
  55. CHEN, Y. G.- GIGA, Y.- GOTO, S., Uniqueness and existence of viscosity solutions of generalized solutions of mean curvature flow equation, J. Diff. Geom., 33 (1991), 749-786. Zbl0696.35087MR1100211
  56. CHRISTIAN, J. W., The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London (1975). 
  57. COLLI, P.- GILARDI, G.- GRASSELLI, M., Weak solution to hyperbolic Stefan problems with memory, No.D.E.A. (to appear). Zbl0878.35121MR1433315
  58. COLLI, P.- GILARDI, G.- GRASSELLI, M., Global smooth solution to the standard phase-field model with memory, Adv. Diff. Eqs. (to appear). Zbl1023.45500MR1441852
  59. COLLI, P.- GILARDI, G.- GRASSELLI, M., Asymptotic analysis of a phase field model with memory for vanishing time relaxation, Preprint, Dipartimento di Matematica dell'Università di Torino (1995). Zbl0927.35022MR1679579
  60. COLLI, P.- GRASSELLI, M., Hyperbolic phase change problems in heat conduction with memory, Proc. Roy. Soc. Edingurgh A, 123 (1993), 571-592. Zbl0788.35151MR1226618
  61. COLLI, P.- SPREKELS, J., On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl., 169 (1995), 269-289. Zbl0852.35030MR1378478
  62. COLLI, P.- SPREKELS, J., Stefan problems and the Penrose-Fife phase field model, Adv. Math. Sci. Appl. (to appear). Zbl0892.35158MR1476282
  63. CRANK, J., Free and Moving Boundary Problems, Clarendon Press, Oxford (1984). Zbl0547.35001MR776227
  64. CRANK, J.- OCKENDON, J. R., Proceedings of an I.M.A. Conference on Crystal Growth, I.M.A. J. of Appl. Math., 35 (1985) 115-264. 
  65. CROWLEY, A. B., Numerical solution of alloy solidification problem revisited, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 122-131. Zbl0593.35100
  66. CROWLEY, A. B.- OCKENDON, J. R., On the numerical solution of an alloy solidification problem, Int. J. Heat Mass Transfer, 22 (1979), 941-947. 
  67. CRYER, C. W., A Bibliography of Free Boundary Problems, M.R.C. Rep. No. 1793, Math. Res. Cent., Univ. of Wisconsin (1977). 
  68. DAMLAMIAN, A., Some results on the multi-phase Stefan problem, Comm. in P.D.E.s, 2 (1977), 1017-1044. Zbl0399.35054MR487015
  69. DAMLAMIAN, A., Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. Zbl0483.35004
  70. DAMLAMIAN, A., Asymptotic behavior of solutions to a multi-phase Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN and J. SPREKELS, eds.), Longman, Harlow (1990), pp. 811-817. Zbl0619.35053
  71. DAMLAMIAN, A.- KENMOCHI, N., Asymptotic behavior of solutions to a multi-phase Stefan problem, Japan J. Appl. Math., 3 (1986), 15-36. Zbl0619.35053MR899211
  72. DAMLAMIAN, A.- KENMOCHI, N., Periodicity and almost periodicity of the solutions to a multi-phase Stefan problem, Nonlinear Analysis, T.M.A., 12 (1988), 921-934. Zbl0673.35103MR960635
  73. A. DAMLAMIAN - J. SPRUCK - A. VISINTIN (eds.), Curvature Flows and Related Topics, Gakkotosho, Tokyo (1995). MR1365295
  74. DANILYUK, I. I., On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. Zbl0604.35080MR810813
  75. J. I. DIAZ - M. A. HERRERO - A. LIÑÁN - J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1995). MR1342322
  76. DIBENEDETTO, E., Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. Zbl0458.35098MR677695
  77. DIBENEDETTO, E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. Zbl0503.35018MR663969
  78. DIBENEDETTO, E.- FRIEDMAN, A., The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. A.M.S., 282 (1984), 183-204. Zbl0621.35102MR728709
  79. DIBENEDETTO, E.- FRIEDMAN, A., Conduction-convection problems with change of phase, J. Diff. Eqs., 62 (1986), 129-185. Zbl0593.35085MR833415
  80. DIBENEDETTO, E.- VESPRI, V., On the singular equation β u t = Δ u , Arch. Rat. Mech. Anal., 132 (1995), 247-309. Zbl0849.35060MR1365831
  81. DOBRUSHIN, R.- KOTECKÝ, R.- SHLOSMAN, S., Wulff Construction. A Global Shape from Local Interaction, A.M.S., Providence (1992). Zbl0917.60103MR1181197
  82. DONNELLY, J. D. P., A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. Zbl0426.35060MR556152
  83. DOREMUS, R. H., Rates of Phase Transformations, Academic Press, Orlando (1985). 
  84. DUVAUT, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. Zbl0258.35037MR328346
  85. DUVAUT, G., The solution of a two-phase Stefan by a variational inequality, in: Moving Boundary Problems in Heat Flow and Diffusion (J. R. OCKENDON - W. R. HODGKINS, eds.), Clarendon Press, Oxford (1975), pp. 173-181. 
  86. ELLIOTT, C. M., On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Maths. Applics., 25 (1980), 121-131. Zbl0428.49003MR571974
  87. ELLIOTT, C. M., The Cahn-Hilliard model for the kinetics of phase separation, in: Mathematical Models for Phase Change Problems (J.-F. RODRIGUES, ed.), Birkhäuser, Basel (1989), pp. 35-73. Zbl0692.73003MR1038064
  88. ELLIOTT, C. M.- JANOVSKY, V., A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg, 88A (1981), 93-107. Zbl0455.76043MR611303
  89. ELLIOTT, C. M.- OCKENDON, J. R., Weak and Variational Methods for Moving Boundary Problems, Pitman, Boston (1982). Zbl0476.35080MR650455
  90. ELLIOTT, C. M.- ZHENG, S., On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357. Zbl0624.35048MR855754
  91. EVANS, G. W., A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. Zbl0043.41101
  92. EVANS, L. C.- SONER, M.- SOUGANIDIS, P. E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123. Zbl0801.35045MR1177477
  93. EVANS, L. C.- SPRUCK, J., Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681. Zbl0726.53029MR1100206
  94. FASANO, A., Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario (1987). Zbl0642.35081MR914370
  95. FASANO, A.- PRIMICERIO, M., General free boundary problems for the heat equation, J. Math. Anal. Appl., I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. Zbl0355.35037
  96. FASANO, A.- PRIMICERIO, M., Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. Zbl0421.35080MR552335
  97. A. FASANO - M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston (1983). Zbl0504.00012MR714939
  98. FASANO, A.- PRIMICERIO, M., Freezing in porous media: a review of mathematical models, Proc. German-Italian Symp. (V. BOFFI - H. NEUNZERT, eds.), Teubner (1984), pp. 288-311. Zbl0578.76102MR788551
  99. FASANO, A.- PRIMICERIO, M., Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. Zbl0578.35087MR784301
  100. FASANO, A.- PRIMICERIO, M., Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. Zbl0591.35088MR805431
  101. FASANO, A.- PRIMICERIO, M., A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. Zbl0594.35092MR819213
  102. FASANO, A.- PRIMICERIO, M.- KAMIN, S., Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. Zbl0378.35008MR477460
  103. FIX, G., Numerical methods for alloy solidification, in: Moving Boundary Problems (D. G. WILSON - A. D. SOLOMON - P. T. BOGGS, eds.) Academic Press, New York (1978), pp. 109-128. Zbl0444.65081MR484050
  104. FIX, G., Numerical simulation of free boundary problems using phase field methods, in: The Mathematics of Finite Element and Applications (J. R. WHITEMAN, ed.), Academic Press, London (1982). Zbl0505.65061
  105. FIX, G., Phase field methods for free boundary problems, in: Free Boundary Problems, Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 580-589. Zbl0518.35086
  106. FLEMINGS, M. C., Solidification Processing, McGraw-Hill, New York (1973). 
  107. FRÉMOND, M., Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, in: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. ODEN, ed.), University of Texas, Austin (1974), pp. 341-349. Zbl0316.76063MR398299
  108. FRÉMOND, M.- VISINTIN, A., Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C.R. Acad. Sci. Paris, Série II, 301 (1985), 1265-1268. Zbl0582.73007MR880589
  109. FRIEDMAN, A., Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. Zbl0199.42301
  110. FRIEDMAN, A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964). Zbl0144.34903MR181836
  111. FRIEDMAN, A., The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. Zbl0162.41903MR227625
  112. FRIEDMAN, A., One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. Zbl0162.42001MR227626
  113. FRIEDMAN, A., Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. Zbl0329.35034MR407452
  114. FRIEDMAN, A., Variational Principles and Free Boundary Problems, Wiley, New York (1982). Zbl0564.49002MR679313
  115. A. FRIEDMAN (ed.), Mathematics in Industrial Problems, Parts 1 - 6, Springer, New York (1988-1993). Zbl0731.00004MR968664
  116. FRIEDMAN, A.- KINDERLEHRER, D., A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. Zbl0334.49002MR385326
  117. A. FRIEDMAN - J. SPRUCK (eds.), Variational and Free Boundary Problems, Springer, New York (1993). Zbl0782.00065MR1320769
  118. GAGE, M., An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 1225-1229. Zbl0534.52008MR726325
  119. GÖTZ, I.G.- PRIMICERIO, M., Spherically symmetrical Stefan problem with the Gibbs-Thomdon law at the moving boundary, Euro. J. Appl. Math., 7 (1996), 249-275. Zbl0879.35163MR1401170
  120. GÖTZ, I. G.- ZALTZMAN, B. B., Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. Zbl0756.35119MR1134749
  121. GRAYSON, M., The heat equation shrinks embedded plane curves to points, J. Diff. Geom., 26 (1987), 285-314. Zbl0667.53001MR906392
  122. GURTIN, M. E., On a theory of phase transitions with interfacial energy, Arch. Rational Mech. Anal., 87 (1985), 187-212. MR768066
  123. GURTIN, M. E., On the two-phase Stefan problem with interfacial energy and entropy, Arch. Rat. Mech. Anal., 96 (1986), 199-241. Zbl0654.73008MR855304
  124. GURTIN, M. E., Toward a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal., 100 (1988), 275-312. Zbl0673.73007MR918798
  125. GURTIN, M. E., Multiphase thermomechanics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal., 104 (1988), 195-221. Zbl0723.73016MR1017288
  126. GURTIN, M. E., On diffusion in two-phase systems: the sharp interface versus the transition layer, in: P.D.E.s and Continuum Models of Phase Transitions (M. RASCLE - D. SERRE - M. SLEMROD, eds.), Springer, Heidelberg (1989), pp. 99-112. Zbl0991.80500MR1036065
  127. GURTIN, M. E., On thermomechanical laws for the motion of a phase interface, Zeit. Angew. Math. Phys., 42 (1991), 370-388. Zbl0754.73020MR1115197
  128. GURTIN, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford (1993). Zbl0787.73004MR1402243
  129. GURTIN, M. E., The dynamics of solid-solid phase transitions. 1. Coherent interfaces, Arch. Rational Mech. Anal., 123 (1993), 305-335. Zbl0788.73017MR1233641
  130. GURTIN, M. E., Thermodynamics and supercritical Stefan equations with nucleations, Quart. Appl. Math., LII (1994), 133-155. Zbl0809.35171MR1262324
  131. M. E. GURTIN - G. MCFADDEN (eds.), On the Evolution of Phase Boundaries, Springer, New York (1991). Zbl0745.00047MR1226911
  132. GURTIN, M. E.- SONER, H. M., Some remarks on the Stefan problem with surface structure, Quart. Appl. Math., L (1992), 291-303. Zbl0763.35110MR1162277
  133. HANZAWA, E.-I., Classical solution of the Stefan problem, Tohoku Math., 33 (1981), 297-335. Zbl0571.35109MR633045
  134. HILL, J. M., One-Dimensional Stefan Problem: An Introduction, Longman, Harlow (1987). Zbl0698.35002MR895137
  135. HOHENBERG, P. C.- HALPERIN, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479. 
  136. K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1990). Zbl0703.00015
  137. K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston (1990). Zbl0702.00021MR1111018
  138. HÖMBERG, D., A mathematical model for the phase transitions in eutectoid carbon steel, I.M.A. J. Appl. Math., 54 (1995), 31-57. Zbl0830.65126MR1319948
  139. HUISKEN, G., Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266. Zbl0556.53001MR772132
  140. ILMANEN, T., Elliptic regularization and partial regularity for motion by mean curvature, Memoirs A.M.S., 520 (1994). Zbl0798.35066MR1196160
  141. JIANG, L. S., The two-phase Stefan problem. I, II, Chinese Math.4 (1963), 686-702; 5 (1964), 36-53. Zbl0149.31601
  142. KAMENOMOSTSKAYA, S., On the Stefan problem, Math. Sbornik, 53 (1961) 489-514 (Russian). Zbl0102.09301
  143. KENMOCHI, N., Systems of nonlinear P.D.E.s arising from dynamical phase transitions, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.), Springer, Heidelberg (1994), pp. 39-86. Zbl0824.35144MR1321831
  144. KENMOCHI, N.- NIEZGÓDKA, M., Viscosity approach to modelling non-isothermal diffusive phase separation, Japan J. Indust. Appl. Math., 13 (1996), 135-16. Zbl0865.35062MR1377464
  145. KINDERLEHRER, D.- NIRENBERG, L., Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. Zbl0352.35023MR440187
  146. KINDERLEHRER, D.- NIRENBERG, L., The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. Zbl0391.35060MR480348
  147. KINDERLEHRER, D.- STAMPACCHIA, G., An Introduction to Variational Inequalities and their Applications, Academic Press, New York (1980). Zbl0457.35001MR567696
  148. KOLODNER, I. I., Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. Zbl0070.43803
  149. KURZ, W.- FISHER, D. J., Fundamentals of Solidification, Trans Tech, Aedermannsdorf (1989). 
  150. LAMÉ, G.- CLAYPERON, B. P., Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256. 
  151. LANGER, J. S., Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52 (1980), 1-28. 
  152. LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). Zbl0189.40603MR259693
  153. LUCKHAUS, S., Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. Zbl0734.35159MR1117346
  154. LUCKHAUS, S., Solidification of alloys and the Gibbs-Thomson law, Preprint (1994). 
  155. LUCKHAUS, S.- MODICA, L., The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. Zbl0681.49012MR1000224
  156. LUCKHAUS, S.- STURZENHECKER, T., Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. Zbl0821.35003MR1386964
  157. LUCKHAUS, S.- VISINTIN, A., Phase transition in a multicomponent system, Manuscripta Math., 43 (1983), 261-288. Zbl0525.35012MR707047
  158. E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma (1980). 
  159. MAGENES, E., Problemi di Stefan bifase in più variabili spaziali, Le Matematiche, 36 (1981), 65-108. Zbl0545.35096MR736797
  160. MASSARI, U.- PEPE, L., Su di una impostazione parametrica del problema dei capillari, Ann. Univ. Ferrara, 20 (1974), 21-31. Zbl0365.76035MR388973
  161. MCGEOUGH, J. A., Principles of Electrochemical Machining, Chapman and Hall, London (1974). 
  162. MCGEOUGH, J. A.- RASMUSSEN, H., On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Maths. Applics., 13 (1974), 13-21. 
  163. MEIRMANOV, A. M., On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. Zbl0498.35087
  164. MEIRMANOV, A. M., On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. USSR.-Sbornik, 40 (1981), 157-178. Zbl0467.35053
  165. MEIRMANOV, A. M., An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. Zbl0545.35097MR620870
  166. MEIRMANOV, A. M., The Stefan Problem, De Gruyter, Berlin (1992) (Russian edition: Nauka, Novosibirsk (1986)). Zbl0751.35052MR1154310
  167. MEIRMANOV, A. M., The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution, Euro J. Appl. Math., 5 (1994), 1-20. Zbl0812.35165MR1270785
  168. MODICA, L., Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré. Anal. Nonlin., 4 (1987), 487-512. Zbl0642.49009MR921549
  169. MODICA, L., Gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 123-142. Zbl0616.76004MR866718
  170. MULLINS, W. W.- SEKERKA, R. F., Morphological stability of a particle growing by diffusion and heat flow, J. Appl. Phys., 34 (1963), 323-329. 
  171. MULLINS, W. W.- SEKERKA, R. F., Stability of a planar interface during solidification of a dilute alloy, J. Appl. Phys., 35 (1964), 441-451. 
  172. NIEZGÓDKA, M., Stefan-like problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 321-347. Zbl0512.35075MR714922
  173. M. NIEZGÓDKA (ed.), Free Boundary Problems: Theory and Applications, Gakkotosho, Tokyo (to appear). MR1462964
  174. NOVICK-COHEN, A.- SEGEL, L. A., Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 278-298. MR763473
  175. J. R. OCKENDON - W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975). Zbl0295.76064
  176. OLEĬNIK, O. A., A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. Zbl0131.09202MR125341
  177. OLEĬNIK, O. A.- PRIMICERIO, M.- RADKEVICH, E. V., Stefan-like problems, Meccanica, 28 (1993), 129-143. Zbl0786.76091
  178. OSHER, S.- SETHIAN, J. A., Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. Zbl0659.65132MR965860
  179. R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford (1975). 
  180. PENROSE, O.- FIFE, P. C., Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. Zbl0709.76001MR1060043
  181. PENROSE, O.- FIFE, P. C., On the relation between the standard phase-field model and a «thermodynamically consistent» phase-field model, Physica D, 69 (1993), 107-113. Zbl0799.76084MR1245658
  182. PLOTNIKOV, P. I.- STAROVOITOV, V. N., The Stefan problem with surface tension as a limit of phase field model, Diff. Eqs., 29 (1993), 395-404. Zbl0802.35165MR1236334
  183. PRIGOGINE, I., Thermodynamics of Irreversible Processes, Wiley-Interscience, New York (1967). Zbl0115.23101
  184. PRIMICERIO, M., Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univ. Politecn. Torino, 32 (1973-74), 183-206. Zbl0307.76048MR477466
  185. PRIMICERIO, M., Problemi di diffusione a frontiera libera, Boll. Un. Mat. Ital., 18-A (1981), 11-68. Zbl0468.35082
  186. PRIMICERIO, M., Mushy regions in phase-change problems, in: Applied Functional Analysis (R. GORENFLO - K.-H. HOFFMANN, eds.), Lang, Frankfurt (1983), pp. 251-269. Zbl0518.35087MR685609
  187. RADKEVITCH, E., Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem, Soviet Dokl. Acad. Sci., 43 (1991), 274-278. Zbl0782.35087
  188. RICHARDSON, S., Hele-Shaw flow with a free boundary produced by the injections of a fluid into a narrow channel, J. Fluid. Mech., 56 (1972), 609-618. Zbl0256.76024
  189. RICHARDSON, S., Some Hele-Shaw flow with time-dependent free boundaries, J. Fluid. Mech., 102 (1981), 263-278. Zbl0451.76015MR612095
  190. RODRIGUES, J.-F., An evolutionary continuous casting problem of Stefan type, Quart. Appl. Math., XLIV (1986), 109-131. Zbl0618.35068MR840448
  191. RODRIGUES, J.-F., Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam (1987). Zbl0606.73017MR880369
  192. RODRIGUES, J.-F., The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math., 8 (1987), 1-35. Zbl0653.35083MR871691
  193. RODRIGUES (ed.), J.-F., Mathematical Models for Phase Change Problems, Birkhäuser, Basel (1989). Zbl0676.00021MR1038061
  194. RODRIGUES, J.-F., Variational methods in the Stefan problem, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.). Springer, Heidelberg (1994), pp. 147-212. Zbl0819.35154MR1321833
  195. ROMANO, A., Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore (1993). Zbl0827.73001MR1347688
  196. RUBINSTEIN, L., On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. Zbl0032.13101MR22979
  197. RUBINSTEIN, L., The Stefan Problem, A.M.S., Providence (1971) (Russian edition: Zvaigzne, Riga (1967)). Zbl0434.35086MR222436
  198. RUBINSTEIN, L., On mathematical modelling of growth of an individual monocomponent crystal from melt in a non-uniform temperature field, Control and Cybernetics, 12 (1983), 5-18. Zbl0512.93043MR720596
  199. RUBINSTEIN, L., On mathematical models of solid-liquid zones in two phase mono- component system and in binary alloys, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 275-282. Zbl0509.76095
  200. RUBINSTEIN, L., Mathematical modelling of growth of an individual monocomponent crystal from its melt in a non-homogeneous temperature field, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 166-178. Zbl0593.35105MR863169
  201. RUBINSTEIN, L.- FASANO, A.- PRIMICERIO, M., Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. Zbl0456.35096MR605212
  202. SAFFMAN, P. G.- TAYLOR, G. I., The penetration of fluid into a porous medium or Hele-Shaw cell, Proc. Roy. Soc. London Ser. A, 245 (1958), 312-329. Zbl0086.41603MR97227
  203. SCHAEFFER, D., A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eqs., 20 (1976), 266-269. Zbl0314.35044MR390499
  204. SESTINI, G., Esistenza di una soluzione in problemi analoghi a quello di Stefan, Riv. Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. Zbl0048.43406
  205. SETHIAN, J. A., Curvature and evolution of fronts, Comm. Math. Phys., 101 (1985), 487-499. Zbl0619.76087MR815197
  206. SHOWALTER, R. E., Mathematical formulation of the Stefan problem, Int. J. Eng. Sci., 20 (1982), 909-912. Zbl0506.76103MR660566
  207. SHOWALTER, R. E.- WALKINGTON, N. J., A hyperbolic Stefan problem, Quart. Appl. Math., XLV (1987), 769-781. Zbl0649.35086MR917025
  208. SKRIPOV, V. P., Metastable Liquids, Wiley, Chichester (1974). 
  209. SONER, M., Convergence of the phase-field equation to the Mullins-Sekerka problem with kinetic undercooling, Arch. Rational Mech. Anal., 131 (1995), 139-197. Zbl0829.73010MR1346368
  210. SPREKELS, J.- ZHENG, S., Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., 176 (1993), 200-223. Zbl0804.35063MR1222165
  211. STEFAN, J., Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. 
  212. TALAMUCCI, F., Analysis of coupled heat-mass transport in freezing porous soils, Surveys for Mathematics in Industry, to appear. Zbl0901.76084
  213. TARZIA, D. A., Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema de Stefan, Math. Notae, 29 (1981/82), 147-241. Zbl0847.00034
  214. TARZIA, D. A., The Two-Phase Stefan Problem and Some Related Conduction Problems, S.B.M.A.C., Gramado (1987). Zbl0774.35091
  215. TARZIA, D. A., A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Prog. Naz. M.P.I. Ital., Firenze (1988). Zbl0694.35221MR1007840
  216. TAYLOR, J. E., Mean curvature and weighted mean curvature, Acta Metall. Mater., 40 (1992), 1475-1485. 
  217. TAYLOR, J. E.- CAHN, J. W., Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. Zbl0844.35044MR1300532
  218. TURNBULL, D., Phase Changes, Solid State Phys., 3 (1956), 225-306. 
  219. UBBELOHDE, A. R., The Molten State of Matter, Wiley, Chichester (1978). 
  220. VERDI, C.- VISINTIN, A., A mathematical model of the austenite-pearlite transformation in plain steel based on the Scheil additivity rule, Acta Metall., 35 (1987), 2711-2717. 
  221. VISINTIN, A., Stefan problem with phase relaxation, I.M.A. J. Appl. Math., 34 (1985), 225-245. Zbl0585.35053MR804824
  222. VISINTIN, A., Study of the eddy-current problem taking account of Hall's effect, App. Anal., 19 (1985), 217-226. Zbl0563.35077MR799985
  223. VISINTIN, A., A new model for supercooling and superheating effects, I.M.A. J. Appl. Math., 36 (1986), 141-157. Zbl0619.35116MR984464
  224. VISINTIN, A., Stefan problem with a kinetic condition at the free boundary, Ann. Mat. Pura Appl., 146 (1987), 97-122. Zbl0643.35115MR916689
  225. VISINTIN, A., Coupled thermal and electromagnetic evolution in a ferromagnetic body, Z. Angew. Math. Mech., 67 (1987), 409-417. Zbl0628.73118MR919395
  226. VISINTIN, A., Supercooling and superheating effects in heterogeneous systems, Quart. Appl. Math., XLV (1987), 239-263. Zbl0636.35089MR895096
  227. VISINTIN, A., Mathematical models of solid-solid phase transformations in steel, I.M.A. J. Appl. Math., 39 (1987), 143-157. Zbl0652.73050MR983739
  228. VISINTIN, A., The Stefan problem with surface tension, in: Mathematical Models of Phase Change Problems (J. F. RODRIGUES, ed.). Birkhäuser, Basel (1989), pp. 191-213. Zbl0692.73002MR1038070
  229. VISINTIN, A., Remarks on the Stefan problem with surface tension, in: Boundary Value Problems for Partial Differential Equations and Applications (C. BAIOCCHI - J. L. LIONS, eds.). Dunod, Paris (1993). Zbl0803.35173MR1260478
  230. VISINTIN (ed.), A., Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer, Heidelberg (1994). 
  231. VISINTIN, A., Two-scale Stefan problem with surface tension, in: Nonlinear Analysis and Applications (N. KENMOCHI - M. NIEZGÓDKA - P. STRZELECKI, eds.), Gakkotosho, Tokyo (1996), pp. 405-424. Zbl0868.35144MR1422948
  232. VISINTIN, A., Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. Zbl0935.80005MR1460449
  233. VISINTIN, A., Models of Phase Transitions, Birkhäuser, Boston (1996). Zbl0882.35004MR1423808
  234. VISINTIN, A., Nucleation and mean curvature flow, Comm. in P.D.E.s (to appear). Zbl0901.53045MR1608492
  235. VISINTIN, A., Stefan Problem with nucleation and mean curvature flow, in preparation. 
  236. VISINTIN, A., Motion by mean curvature flow and nucleation, C. R. Acad. Sc. Paris, Serie I, 325 (1997), 55-60. Zbl0883.35136MR1461397
  237. WILSON, D. G.- SOLOMON, A. D.- ALEXIADES, V., Progress with simple binary alloy solidification problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston1983, pp. 306-320. Zbl0514.76105MR719507
  238. D. G. WILSON - A. D. SOLOMON - P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York (1978). Zbl0432.00011MR466887
  239. WILSON, D. G.- SOLOMON, A. D.- TRENT, J. S., A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory (1979). 
  240. WOODRUFF, P. D., The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge (1973). 
  241. ZIEMER, W. P., Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. Zbl0506.35053MR654859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.