The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Local Lipschitz continuity of the stop operator”

Differential equations at resonance

Donal O'Regan (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

New existence results are presented for the two point singular “resonant” boundary value problem 1 p ( p y ' ) ' + r y + λ m q y = f ( t , y , p y ' ) a.eȯn [ 0 , 1 ] with y satisfying Sturm Liouville or Periodic boundary conditions. Here λ m is the ( m + 1 ) s t eigenvalue of 1 p q [ ( p u ' ) ' + r p u ] + λ u = 0 a.eȯn [ 0 , 1 ] with u satisfying Sturm Liouville or Periodic boundary data.

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

Similarity:

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

Singular Dirichlet boundary value problems. II: Resonance case

Donal O'Regan (1998)

Czechoslovak Mathematical Journal

Similarity:

Existence results are established for the resonant problem y ' ' + λ m a y = f ( t , y ) a.e. on [ 0 , 1 ] with y satisfying Dirichlet boundary conditions. The problem is singular since f is a Carathéodory function, a L l o c 1 ( 0 , 1 ) with a > 0 a.e. on [ 0 , 1 ] and 0 1 x ( 1 - x ) a ( x ) d x < .