The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Proper cycles of indefinite quadratic forms and their right neighbors”

Cycle-pancyclism in bipartite tournaments I

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k? It is proved that for an even k in the range 4 ≤ k ≤ [(n+4)/2], there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 3 and the result is best possible. In a forthcoming paper the case of directed cycles of length k, k even and k <...

Cycle-pancyclism in bipartite tournaments II

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 4 and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was...

A conjecture on cycle-pancyclism in tournaments

Hortensia Galeana-Sánchez, Sergio Rajsbaum (1998)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote I γ ( C ) = | A ( γ ) A ( C ) | , the number of arcs that γ and Cₖ have in common. Let f ( k , T , γ ) = m a x I γ ( C ) | C T and f(n,k) = minf(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T. In previous...

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary (2001)

Czechoslovak Mathematical Journal

Similarity:

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

On the limit cycle of the Liénard equation

Kenzi Odani (2000)

Archivum Mathematicum

Similarity:

In the paper, we give an existence theorem of periodic solution for Liénard equation x ˙ = y - F ( x ) , y ˙ = - g ( x ) . As a result, we estimate the amplitude ρ ( μ ) (maximal x -value) of the limit cycle of the van der Pol equation x ˙ = y - μ ( x 3 / 3 - x ) , y ˙ = - x from above by ρ ( μ ) < 2 . 3439 for every μ 0 . The result is an improvement of the author’s previous estimation ρ ( μ ) < 2 . 5425 .