Displaying similar documents to “Proper cycles of indefinite quadratic forms and their right neighbors”

Cycle-pancyclism in bipartite tournaments I

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k? It is proved that for an even k in the range 4 ≤ k ≤ [(n+4)/2], there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 3 and the result is best possible. In a forthcoming paper the case of directed cycles of length k, k even and k <...

Cycle-pancyclism in bipartite tournaments II

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle C h ( k ) of length h(k), h(k) ∈ k,k-2 with | A ( C h ( k ) ) A ( γ ) | h ( k ) - 4 and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was...

A conjecture on cycle-pancyclism in tournaments

Hortensia Galeana-Sánchez, Sergio Rajsbaum (1998)

Discussiones Mathematicae Graph Theory

Similarity:

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote I γ ( C ) = | A ( γ ) A ( C ) | , the number of arcs that γ and Cₖ have in common. Let f ( k , T , γ ) = m a x I γ ( C ) | C T and f(n,k) = minf(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T. In previous...

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary (2001)

Czechoslovak Mathematical Journal

Similarity:

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

On the limit cycle of the Liénard equation

Kenzi Odani (2000)

Archivum Mathematicum

Similarity:

In the paper, we give an existence theorem of periodic solution for Liénard equation x ˙ = y - F ( x ) , y ˙ = - g ( x ) . As a result, we estimate the amplitude ρ ( μ ) (maximal x -value) of the limit cycle of the van der Pol equation x ˙ = y - μ ( x 3 / 3 - x ) , y ˙ = - x from above by ρ ( μ ) < 2 . 3439 for every μ 0 . The result is an improvement of the author’s previous estimation ρ ( μ ) < 2 . 5425 .

Structure of cubic mapping graphs for the ring of Gaussian integers modulo n

Yangjiang Wei, Jizhu Nan, Gaohua Tang (2012)

Czechoslovak Mathematical Journal

Similarity:

Let n [ i ] be the ring of Gaussian integers modulo n . We construct for n [ i ] a cubic mapping graph Γ ( n ) whose vertex set is all the elements of n [ i ] and for which there is a directed edge from a n [ i ] to b n [ i ] if b = a 3 . This article investigates in detail the structure of Γ ( n ) . We give suffcient and necessary conditions for the existence of cycles with length t . The number of t -cycles in Γ 1 ( n ) is obtained and we also examine when a vertex lies on a t -cycle of Γ 2 ( n ) , where Γ 1 ( n ) is induced by all the units of n [ i ] while Γ 2 ( n ) is induced...