Displaying similar documents to “Disturbance decoupling of nonlinear MISO systems by static measurement feedback”

Global adaptive output-feedback control for switched uncertain nonlinear systems

Zhibao Song, Junyong Zhai, Hui Ye (2017)

Kybernetika

Similarity:

In this paper, we investigate the problem of global output-feedback regulation for a class of switched nonlinear systems with unknown linear growth condition and uncertain output function. Based on the backstepping method, an adaptive output-feedback controller is designed to guarantee that the state of the switched nonlinear system can be globally regulated to the origin while maintaining global boundedness of the resulting closed-loop switched system under arbitrary switchings. A numerical...

Output feedback problems for a class of nonlinear systems

Sergej Čelikovský, Javier Ruiz, A. J. Sapiens, Jorge A. Torres Muñoz (2003)

Kybernetika

Similarity:

The paper deals with the construction of the output feedback controllers for the systems that are transformable into a simpler form via coordinate change and static state feedback and, at the same time, via (possibly different) coordinate change and output injection. Illustrative examples are provided to stress the major obstacles in applying the above scheme, especially as far as its global aspects are concerned. The corresponding results are then applied to the problem of the real-time...

A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems

Eduardo Aranda-Bricaire, Ülle Kotta (2004)

Kybernetika

Similarity:

The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.