Displaying similar documents to “Piecewise approximation and neural networks”

Neural networks as a tool for georadar data processing

Piotr Szymczyk, Sylwia Tomecka-Suchoń, Magdalena Szymczyk (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure-a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from...

Function approximation of Seidel aberrations by a neural network

Rossella Cancelliere, Mario Gai (2004)

Bollettino dell'Unione Matematica Italiana

Similarity:

This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the x , y ...

About the maximum information and maximum likelihood principles

Igor Vajda, Jiří Grim (1998)

Kybernetika

Similarity:

Neural networks with radial basis functions are considered, and the Shannon information in their output concerning input. The role of information- preserving input transformations is discussed when the network is specified by the maximum information principle and by the maximum likelihood principle. A transformation is found which simplifies the input structure in the sense that it minimizes the entropy in the class of all information-preserving transformations. Such transformation need...

A heuristic forecasting model for stock decision making.

D. Zhang, Q. Jiang, X. Li (2005)

Mathware and Soft Computing

Similarity:

This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. The forecasting...