The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Strict topologies and Banach-Steinhaus type theorems”

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

Some properties and applications of equicompact sets of operators

E. Serrano, C. Piñeiro, J. M. Delgado (2007)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces. A subset M of (X,Y) (the vector space of all compact operators from X into Y endowed with the operator norm) is said to be equicompact if every bounded sequence (xₙ) in X has a subsequence ( x k ( n ) ) such that ( T x k ( n ) ) is uniformly convergent for T ∈ M. We study the relationship between this concept and the notion of uniformly completely continuous set and give some applications. Among other results, we obtain a generalization of the classical Ascoli theorem and a compactness...

On Vitali-Hahn-Saks-Nikodym type theorems

Barbara T. Faires (1976)

Annales de l'institut Fourier

Similarity:

A Boolean algebra 𝒜 has the interpolation property (property (I)) if given sequences ( a n ) , ( b m ) in 𝒜 with a n b m for all n , m , there exists an element b in 𝒜 such that a n b b n for all n . Let 𝒜 denote an algebra with the property (I). It is shown that if ( μ n : 𝒜 X ) ( X a Banach space) is a sequence of strongly additive measures such that lim n μ n ( a ) exists for each a 𝒜 , then μ ( a ) = lim n μ n ( a ) defines a strongly additive map from 𝒜 to X the μ n ' s are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive...

Weakly precompact operators on C b ( X , E ) with the strict topology

Juliusz Stochmal (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C b ( X , E ) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators T : C b ( X , E ) F . In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator T : C b ( X , E ) F is weakly precompact.

Strong measure zero and meager-additive sets through the prism of fractal measures

Ondřej Zindulka (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2 ω is meager-additive if and only if it is -additive; if f : 2 ω 2 ω is continuous and X is meager-additive, then so is f ( X ) .

Topological properties of some spaces of continuous operators

Marian Nowak (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C b ( X , E ) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space L β ( C b ( X , E ) , F ) of all ( β , | | · | | F ) -continuous linear operators from C b ( X , E ) to F, equipped with the topology τ s of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize τ s -compact subsets of L β ( C b ( X , E ) , F ) in terms of properties of the corresponding sets of the representing...

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

On vector valued measure spaces of bounded Φ -variation containing copies of

María J. Rivera (2001)

Czechoslovak Mathematical Journal

Similarity:

Given a Young function Φ , we study the existence of copies of c 0 and in c a b v Φ ( μ , X ) and in c a b s v Φ ( μ , X ) , the countably additive, μ -continuous, and X -valued measure spaces of bounded Φ -variation and bounded Φ -semivariation, respectively.