Displaying similar documents to “Application of MCMC to change point detection”

A Bayesian Spatial Mixture Model for FMRI Analysis

Geliazkova, Maya (2010)

Serdica Journal of Computing

Similarity:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics...

Beliefs about beliefs, a theory for stochastic assessment of subjective probabilities.

James M. Dickey (1980)

Trabajos de Estadística e Investigación Operativa

Similarity:

Parameterized families of subjective probability distributions can be used to great advantage to model beliefs of experts, especially when such models include dependence on concomitant variables. In one such model, probabilities of simple events can be expressed in loglinear form. In another, a generalization of the multivariate t distribution has concomitant variables entering linearly through the location vector. Interactive interview methods for assessing this second model and matrix...

Bayesian analysis of structural change in a distributed Lag Model (Koyck Scheme)

Arvin Paul B. Sumobay, Arnulfo P. Supe (2014)

Discussiones Mathematicae Probability and Statistics

Similarity:

Structural change for the Koyck Distributed Lag Model is analyzed through the Bayesian approach. The posterior distribution of the break point is derived with the use of the normal-gamma prior density and the break point, ν, is estimated by the value that attains the Highest Posterior Probability (HPP). Simulation study is done using R. Given the parameter values ϕ = 0.2 and λ = 0.3, the full detection of the structural change when σ² = 1 is generally attained at...

Sampling inference, Bayes' inference and robustness in the advancement of learning.

George E. P. Box (1980)

Trabajos de Estadística e Investigación Operativa

Similarity:

Scientific learning is seen as an iterative process employing Criticism and Estimation. Sampling theory use of predictive distributions for model criticism is examined and also the implications for significance tests and the theory of precise measurement. Normal theory examples and ridge estimates are considered. Predictive checking functions for transformation, serial correlation, and bad values are reviewed as is their relation with Bayesian options. Robustness is seen from a Bayesian...

Two lognormal models for real data.

Vernic, Raluca, Teodorescu, Sandra, Pelican, Elena (2009)

Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică

Similarity:

An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study

Ewa Skotarczak, Ewa Bakinowska, Kamila Tomaszyk (2014)

Biometrical Letters

Similarity:

A nonlinear statistical approach was used to evaluate the efficiency of plant protection products. The methodology presented can be implemented when the observations in an experiment are recorded as success or failure. This occurs, for example, when following the application of a herbicide or pesticide, a single weed or insect is classified as alive (failure) or dead (success). Then a higher probability of success means a higher efficiency of the tested product. Using simulated data...