Displaying similar documents to “Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods”

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

Similarity:

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented...

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

Similarity:

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue....

Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems

Hongtao Chen, Shanghui Jia, Hehu Xie (2009)

Applications of Mathematics

Similarity:

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.