Displaying similar documents to “Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems”

A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize...

Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case

Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325–356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675–4697]. We show the well-posedness of this approach and derive...

Error estimates for mixed methods

R. S. Falk, J. E. Osborn (1980)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Analysis of a non-standard mixed finite element method with applications to superconvergence

Jan Brandts (2009)

Applications of Mathematics

Similarity:

We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more...