Finite volume box schemes and mixed methods

Jean-Pierre Croisille

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 5, page 1087-1106
  • ISSN: 0764-583X

How to cite


Croisille, Jean-Pierre. "Finite volume box schemes and mixed methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1087-1106. <>.

author = {Croisille, Jean-Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Poisson equation; mixed Petrov-Galerkin finite volume schemes; error estimate; box scheme},
language = {eng},
number = {5},
pages = {1087-1106},
publisher = {Dunod},
title = {Finite volume box schemes and mixed methods},
url = {},
volume = {34},
year = {2000},

AU - Croisille, Jean-Pierre
TI - Finite volume box schemes and mixed methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1087
EP - 1106
LA - eng
KW - Poisson equation; mixed Petrov-Galerkin finite volume schemes; error estimate; box scheme
UR -
ER -


  1. [1] B. Achchab, A. Agouzal, J. Baranger and J.-F. Maître, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. Zbl0909.65076MR1645037
  2. [2] D.N. Arnold and F. Brezzi, Mixed and non-conformmg finite elements methods: implementation, post processing and error estimates. RAIRO - Modél. Math. Anal. Numér. 19 (1985) 7-32. Zbl0567.65078MR813687
  3. [3] I. Babuška, Error-Bounds for Finite Elements Method. Numer. Math. 16 (1971) 322-333. Zbl0214.42001MR288971
  4. [4] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. Zbl0634.65105MR899703
  5. [5] J. Baranger, J.F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér. 30 (1996) 445-465. Zbl0857.65116MR1399499
  6. [6] C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t. 303, Série I 19 (1986) 971-974. Zbl0612.49004MR877183
  7. [7] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. Zbl0666.76055MR972452
  8. [8] D. Braess, Finite Elements. Cambridge Univ. Press (1997). Zbl0894.65054MR1463151
  9. [9] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15 (1994) Springer, New-York. Zbl0804.65101MR1278258
  10. [10] F. Brezzi, On the existence, umqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO 8 (1974) R-2, 129-151. Zbl0338.90047MR365287
  11. [11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math. 15, Springer Verlag, New-York (1991). Zbl0788.73002MR1115205
  12. [12] F. Brezzi, J. Douglas and L.D. Marini, Two families of Mixed Finite Element for second order elliptic problems. Numer. Math. 47 (1985) 217-235. Zbl0599.65072MR799685
  13. [13] Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. Zbl0729.65086MR1087511
  14. [14] F. Casier, H. Deconninck and C. Hirsch, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations. AIAA-83-0126 (1983). 
  15. [15] J.J. Chattot, Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331. 
  16. [16] J.J. Chattot, A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear) Zbl0985.76063MR1714513
  17. [17] J. J. Chattot and S. Malet, A "box-scheme" for the Euler equations. Lect. Notes Math. 1270, Springer-Verlag, Berlin (1987) 82-99. Zbl0626.65088MR910106
  18. [18] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer. 33 (1999) 493-516. Zbl0937.65116MR1713235
  19. [19] B. Courbet, Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished. 
  20. [20] B. Courbet, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n°4 (1990) 21-46. Zbl0708.76105
  21. [21] B. Courbet, Étude d'une famille de schémas boîtes à deux points et application a la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n° 5 (1991) 31-44. 
  22. [22] B. Courbet and J.P. Croisille, Finite Volume Box Schemes on triangular meshes. Math. Model Numer. 32 (1998) 631-649. Zbl0920.65065MR1643473
  23. [23] J.-P. Croisille, Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999). Zbl1052.65550MR2062144
  24. [24] M. Crouzeix and P.A. Raviart, Conforming and non conformmg finite element methods for solvmg the stationary Stokes equations I. RAIRO 7 (1973) R-3, 33-76. Zbl0302.65087MR343661
  25. [25] F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear). Zbl0954.65062MR1752417
  26. [26] R. Eymard, T. Gallouet and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997). Zbl0981.65095
  27. [27] G. Fairweather and R.D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput. 12 (1991) 127-144. Zbl0722.65062MR1078800
  28. [28] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys. 84 (1989) 174-206. Zbl0677.76062MR1015358
  29. [29] V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math. 749, Springer, Berlin (1979). Zbl0413.65081MR548867
  30. [30] W. Hackbusch, On first and second order box schemes. Computing 41 (1989) 277-296. Zbl0649.65052MR993825
  31. [31] H.B. Keller, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350. Zbl0243.65060MR277129
  32. [32] R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999). Zbl1052.65554MR2062126
  33. [33] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. Zbl0573.65082MR787572
  34. [34] P.C. Meek and J. Norbury, Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21 (1984) 883-893. Zbl0558.65087MR760623
  35. [35] R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. Zbl0485.65049MR650055
  36. [36] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606, Springer-Verlag, Berlin (1977) 292-315. Zbl0362.65089MR483555
  37. [37] E. Süli, Convergence of finite volume schemes for Poisson's equation on non-uniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. Zbl0802.65104MR1119276
  38. [38] E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp. 59 (1992) 59-382. Zbl0767.65072MR1134740
  39. [39] T. Schmidt, Box Schemes on quadrilateral meshes. Computing 51 (1993) 271-292. Zbl0787.65075MR1253406
  40. [40] J.-M. Thomas and D. Trujillo, Mixed Finite Volume methods. Int. J. Num. Meth. Eng. 45 (1999) to appear. Zbl0948.65125MR1728850
  41. [41] S.F. Wornom, Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem. 83262 (1982). 
  42. [42] S.F. Wornom and M.M. Hafez, Implicit conservative schemes for the Euler equations. AIAA J. 24 (1986) 215-233. Zbl0591.76108MR825091
  43. [43] A. Younes, R. Mose, P. Ackerer and G. Chavent, A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys. 149 (1999) 148-167. Zbl0923.65064MR1669813

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.