Finite volume box schemes and mixed methods
- Volume: 34, Issue: 5, page 1087-1106
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCroisille, Jean-Pierre. "Finite volume box schemes and mixed methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1087-1106. <http://eudml.org/doc/194022>.
@article{Croisille2000,
author = {Croisille, Jean-Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Poisson equation; mixed Petrov-Galerkin finite volume schemes; error estimate; box scheme},
language = {eng},
number = {5},
pages = {1087-1106},
publisher = {Dunod},
title = {Finite volume box schemes and mixed methods},
url = {http://eudml.org/doc/194022},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Croisille, Jean-Pierre
TI - Finite volume box schemes and mixed methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1087
EP - 1106
LA - eng
KW - Poisson equation; mixed Petrov-Galerkin finite volume schemes; error estimate; box scheme
UR - http://eudml.org/doc/194022
ER -
References
top- [1] B. Achchab, A. Agouzal, J. Baranger and J.-F. Maître, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. Zbl0909.65076MR1645037
- [2] D.N. Arnold and F. Brezzi, Mixed and non-conformmg finite elements methods: implementation, post processing and error estimates. RAIRO - Modél. Math. Anal. Numér. 19 (1985) 7-32. Zbl0567.65078MR813687
- [3] I. Babuška, Error-Bounds for Finite Elements Method. Numer. Math. 16 (1971) 322-333. Zbl0214.42001MR288971
- [4] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. Zbl0634.65105MR899703
- [5] J. Baranger, J.F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér. 30 (1996) 445-465. Zbl0857.65116MR1399499
- [6] C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t. 303, Série I 19 (1986) 971-974. Zbl0612.49004MR877183
- [7] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. Zbl0666.76055MR972452
- [8] D. Braess, Finite Elements. Cambridge Univ. Press (1997). Zbl0894.65054MR1463151
- [9] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15 (1994) Springer, New-York. Zbl0804.65101MR1278258
- [10] F. Brezzi, On the existence, umqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO 8 (1974) R-2, 129-151. Zbl0338.90047MR365287
- [11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math. 15, Springer Verlag, New-York (1991). Zbl0788.73002MR1115205
- [12] F. Brezzi, J. Douglas and L.D. Marini, Two families of Mixed Finite Element for second order elliptic problems. Numer. Math. 47 (1985) 217-235. Zbl0599.65072MR799685
- [13] Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. Zbl0729.65086MR1087511
- [14] F. Casier, H. Deconninck and C. Hirsch, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations. AIAA-83-0126 (1983).
- [15] J.J. Chattot, Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331.
- [16] J.J. Chattot, A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear) Zbl0985.76063MR1714513
- [17] J. J. Chattot and S. Malet, A "box-scheme" for the Euler equations. Lect. Notes Math. 1270, Springer-Verlag, Berlin (1987) 82-99. Zbl0626.65088MR910106
- [18] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer. 33 (1999) 493-516. Zbl0937.65116MR1713235
- [19] B. Courbet, Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished.
- [20] B. Courbet, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n°4 (1990) 21-46. Zbl0708.76105
- [21] B. Courbet, Étude d'une famille de schémas boîtes à deux points et application a la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n° 5 (1991) 31-44.
- [22] B. Courbet and J.P. Croisille, Finite Volume Box Schemes on triangular meshes. Math. Model Numer. 32 (1998) 631-649. Zbl0920.65065MR1643473
- [23] J.-P. Croisille, Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999). Zbl1052.65550MR2062144
- [24] M. Crouzeix and P.A. Raviart, Conforming and non conformmg finite element methods for solvmg the stationary Stokes equations I. RAIRO 7 (1973) R-3, 33-76. Zbl0302.65087MR343661
- [25] F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear). Zbl0954.65062MR1752417
- [26] R. Eymard, T. Gallouet and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997). Zbl0981.65095
- [27] G. Fairweather and R.D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput. 12 (1991) 127-144. Zbl0722.65062MR1078800
- [28] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys. 84 (1989) 174-206. Zbl0677.76062MR1015358
- [29] V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math. 749, Springer, Berlin (1979). Zbl0413.65081MR548867
- [30] W. Hackbusch, On first and second order box schemes. Computing 41 (1989) 277-296. Zbl0649.65052MR993825
- [31] H.B. Keller, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350. Zbl0243.65060MR277129
- [32] R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999). Zbl1052.65554MR2062126
- [33] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. Zbl0573.65082MR787572
- [34] P.C. Meek and J. Norbury, Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21 (1984) 883-893. Zbl0558.65087MR760623
- [35] R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. Zbl0485.65049MR650055
- [36] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606, Springer-Verlag, Berlin (1977) 292-315. Zbl0362.65089MR483555
- [37] E. Süli, Convergence of finite volume schemes for Poisson's equation on non-uniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. Zbl0802.65104MR1119276
- [38] E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp. 59 (1992) 59-382. Zbl0767.65072MR1134740
- [39] T. Schmidt, Box Schemes on quadrilateral meshes. Computing 51 (1993) 271-292. Zbl0787.65075MR1253406
- [40] J.-M. Thomas and D. Trujillo, Mixed Finite Volume methods. Int. J. Num. Meth. Eng. 45 (1999) to appear. Zbl0948.65125MR1728850
- [41] S.F. Wornom, Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem. 83262 (1982).
- [42] S.F. Wornom and M.M. Hafez, Implicit conservative schemes for the Euler equations. AIAA J. 24 (1986) 215-233. Zbl0591.76108MR825091
- [43] A. Younes, R. Mose, P. Ackerer and G. Chavent, A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys. 149 (1999) 148-167. Zbl0923.65064MR1669813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.