Analysis of a non-standard mixed finite element method with applications to superconvergence

Jan Brandts

Applications of Mathematics (2009)

  • Volume: 54, Issue: 3, page 225-235
  • ISSN: 0862-7940

Abstract

top
We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method.

How to cite

top

Brandts, Jan. "Analysis of a non-standard mixed finite element method with applications to superconvergence." Applications of Mathematics 54.3 (2009): 225-235. <http://eudml.org/doc/37817>.

@article{Brandts2009,
abstract = {We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method.},
author = {Brandts, Jan},
journal = {Applications of Mathematics},
keywords = {least-squares mixed finite element method; non-standard mixed finite element method; superconvergence; supercloseness; least-squares mixed finite element method; non-standard mixed finite element method; supercloseness},
language = {eng},
number = {3},
pages = {225-235},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of a non-standard mixed finite element method with applications to superconvergence},
url = {http://eudml.org/doc/37817},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Brandts, Jan
TI - Analysis of a non-standard mixed finite element method with applications to superconvergence
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 225
EP - 235
AB - We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method.
LA - eng
KW - least-squares mixed finite element method; non-standard mixed finite element method; superconvergence; supercloseness; least-squares mixed finite element method; non-standard mixed finite element method; supercloseness
UR - http://eudml.org/doc/37817
ER -

References

top
  1. Barrios, T. P., Gatica, G. N., 10.1016/j.cam.2006.01.017, J. Comput. Appl. Math. 200 (2007), 653-676. (2007) Zbl1112.65106MR2289241DOI10.1016/j.cam.2006.01.017
  2. Bochev, P. B., Gunzburger, M. D., 10.1137/S0036144597321156, SIAM Rev. 40 (1998), 789-837. (1998) Zbl0914.65108MR1659689DOI10.1137/S0036144597321156
  3. Brandts, J. H., 10.1007/s002110050064, Numer. Math. 68 (1994), 311-324. (1994) Zbl0823.65103MR1313147DOI10.1007/s002110050064
  4. Brandts, J. H., Křížek, M., 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489-505. (2003) Zbl1042.65081MR1987941DOI10.1093/imanum/23.3.489
  5. Brandts, J. H., Křížek, M., Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27-36. (2005) Zbl1072.65137MR2124141
  6. Brandts, J. H., Chen, Y. P., 10.1007/978-3-642-18775-9_14, In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175. (2004) Zbl1056.65110MR2121365DOI10.1007/978-3-642-18775-9_14
  7. Brandts, J. H., Chen, Y. P., Superconvergence of least-squares mixed finite elements, Int. J. Numer. Anal. Model. 3 (2006), 303-310. (2006) Zbl1096.65108MR2237884
  8. Brandts, J. H., Chen, Y. P., Yang, J., 10.1093/imanum/dri048, IMA J. Numer. Anal. 26 (2006), 779-789. (2006) Zbl1106.65102MR2269196DOI10.1093/imanum/dri048
  9. Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151. (1974) Zbl0338.90047MR0365287
  10. Brezzi, F., Fortin, M., Mixed and hybrid finite element methods, Springer Berlin-Heidelberg-New York (1991). (1991) Zbl0788.73002MR1115205
  11. Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F., 10.1137/0731091, SIAM J. Numer. Anal. 31 (1994), 1785-1799. (1994) MR1302685DOI10.1137/0731091
  12. Carey, G. F., Pehlivanov, A. I., 10.1016/S0045-7825(97)00098-4, Comput. Methods Appl. Mech. Eng. 150 (1997), 125-131. (1997) Zbl0907.65101MR1487940DOI10.1016/S0045-7825(97)00098-4
  13. Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C., 10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2, Int. J. Numer. Methods Fluids 27 (1998), 97-107. (1998) Zbl0904.76043MR1602155DOI10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2
  14. Ciarlet, P., The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition, SIAM Philadelphia (2002). (2002) MR1930132
  15. Křížek, M., Neittaanmäki, P., Stenberg, R., Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96, Marcel Dekker New York (1998). (1998) MR1602809
  16. Pehlivanov, A. I., Carey, G. F., 10.1051/m2an/1994280504991, RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. (1994) Zbl0820.65065MR1295584DOI10.1051/m2an/1994280504991
  17. Pehlivanov, A. I., Carey, G. F., Lazarov, R. D., 10.1137/0731071, SIAM J. Numer. Anal. 31 (1994), 1368-1377. (1994) Zbl0806.65108MR1293520DOI10.1137/0731071
  18. Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S., 10.1007/s002110050179, Numer. Math. 72 (1996), 501-522. (1996) Zbl0878.65096MR1376110DOI10.1007/s002110050179
  19. Raviart, P. A., Thomas, J. M., 10.1007/BFb0064470, Lect. Notes Math. 606 (1977), 292-315. (1977) Zbl0362.65089MR0483555DOI10.1007/BFb0064470
  20. Wahlbin, L. B., Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605, Springer Berlin (1995). (1995) MR1439050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.