The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Hyperbolic boundary value problem with equivalued surface on a domain with thin layer”

Multiscale convergence and reiterated homogenization of parabolic problems

Anders Holmbom, Nils Svanstedt, Niklas Wellander (2005)

Applications of Mathematics

Similarity:

Reiterated homogenization is studied for divergence structure parabolic problems of the form u ε / t - div a x , x / ε , x / ε 2 , t , t / ε k u ε = f . It is shown that under standard assumptions on the function a ( x , y 1 , y 2 , t , τ ) the sequence { u ϵ } of solutions converges weakly in L 2 ( 0 , T ; H 0 1 ( Ω ) ) to the solution u of the homogenized problem u / t - div ( b ( x , t ) u ) = f .

Homogenization of evolution problems for a composite medium with very small and heavy inclusions

Michel Bellieud (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div ( a ε u ε ) = f in Ω × ( 0 , T ) + boundary conditions , n { 1 , 2 } , when the coefficients ρ ε , a ε (defined in Ø ) take possibly high values on a ε -periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.