Displaying similar documents to “Extended Weyl type theorems”

Ascent, descent and roots of Fredholm operators

Bertram Yood (2003)

Studia Mathematica

Similarity:

Let T be a Fredholm operator on a Banach space. Say T is rootless if there is no bounded linear operator S and no positive integer m ≥ 2 such that S m = T . Criteria and examples of rootlessness are given. This leads to a study of ascent and descent whether finite or infinite for T with examples having infinite ascent and descent.

A note on the a -Browder’s and a -Weyl’s theorems

M. Amouch, H. Zguitti (2008)

Mathematica Bohemica

Similarity:

Let T be a Banach space operator. In this paper we characterize a -Browder’s theorem for T by the localized single valued extension property. Also, we characterize a -Weyl’s theorem under the condition E a ( T ) = π a ( T ) , where E a ( T ) is the set of all eigenvalues of T which are isolated in the approximate point spectrum and π a ( T ) is the set of all left poles of T . Some applications are also given.

A note on the index of B -Fredholm operators

M. Berkani, Dagmar Medková (2004)

Mathematica Bohemica

Similarity:

From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251–257] we know that if S , T are commuting B -Fredholm operators acting on a Banach space X , then S T is a B -Fredholm operator. In this note we show that in general we do not have error ( S T ) = error ( S ) + error ( T ) , contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717–1723]. However, if there exist U , V L ( X ) such that S , T , U , V are commuting and U S + V T = I , then error ( S T ) = error ( S ) + error ( T ) , where error stands for the index of a B -Fredholm...