A note on the a -Browder’s and a -Weyl’s theorems

M. Amouch; H. Zguitti

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 2, page 157-166
  • ISSN: 0862-7959

Abstract

top
Let T be a Banach space operator. In this paper we characterize a -Browder’s theorem for T by the localized single valued extension property. Also, we characterize a -Weyl’s theorem under the condition E a ( T ) = π a ( T ) , where E a ( T ) is the set of all eigenvalues of T which are isolated in the approximate point spectrum and π a ( T ) is the set of all left poles of T . Some applications are also given.

How to cite

top

Amouch, M., and Zguitti, H.. "A note on the $a$-Browder’s and $a$-Weyl’s theorems." Mathematica Bohemica 133.2 (2008): 157-166. <http://eudml.org/doc/250520>.

@article{Amouch2008,
abstract = {Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.},
author = {Amouch, M., Zguitti, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property; B-Fredholm operator; Weyl's theorem; operator of Kato type; single-valued extension property (SVEP)},
language = {eng},
number = {2},
pages = {157-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the $a$-Browder’s and $a$-Weyl’s theorems},
url = {http://eudml.org/doc/250520},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Amouch, M.
AU - Zguitti, H.
TI - A note on the $a$-Browder’s and $a$-Weyl’s theorems
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 2
SP - 157
EP - 166
AB - Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.
LA - eng
KW - B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property; B-Fredholm operator; Weyl's theorem; operator of Kato type; single-valued extension property (SVEP)
UR - http://eudml.org/doc/250520
ER -

References

top
  1. Fredholm Theory and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004. (2004) MR2070395
  2. 10.1006/jmaa.2000.6966, J. Math. Anal. Appl. 250 (2000), 435–448. (2000) MR1786074DOI10.1006/jmaa.2000.6966
  3. 10.1016/j.jmaa.2006.03.085, J. Math. Anal. Appl. 326 (2007), 1476–1484. (2007) Zbl1117.47007MR2280999DOI10.1016/j.jmaa.2006.03.085
  4. Generalized a -Weyl’s theorem and the single-valued extension property, Extracta. Math. 21 (2006), 51–65. (2006) Zbl1123.47005MR2258341
  5. 10.1017/S0017089505002971, Glasgow Math. J. 48 (2006), 179–185. (2006) MR2224938DOI10.1017/S0017089505002971
  6. Single valued extension property and generalized Weyl’s theorem, Math. Bohem. 131 (2006), 29–38. (2006) MR2211001
  7. 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291–302. (2004) MR2041251DOI10.1017/S144678870000896X
  8. Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376. (2003) MR1991673
  9. On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465. (2001) MR1878588
  10. 10.1017/S0017089500030147, Glasgow Math. J. 42 (2000), 479–486. (2000) MR1793814DOI10.1017/S0017089500030147
  11. Hereditarily normaloid operators, Extracta Math. 20 (2005), 203–217. (2005) Zbl1160.47301MR2195202
  12. 10.2140/pjm.1975.58.61, Pacific J. Math. 58 (1975), 61–69. (1975) Zbl0315.47002MR0374985DOI10.2140/pjm.1975.58.61
  13. 10.2969/jmsj/03420317, J. Math. Soc. Japan 34 (1982), 317–337. (1982) Zbl0477.47013MR0651274DOI10.2969/jmsj/03420317
  14. 10.1090/S0002-9939-00-05741-5, Proc. Amer. Math. Soc. 128 (2000), 2291–2296. (2000) MR1756089DOI10.1090/S0002-9939-00-05741-5
  15. 10.1006/jmaa.2001.7448, J. Math. Anal. Appl. 260 (2001), 200–213. (2001) MR1843976DOI10.1006/jmaa.2001.7448
  16. 10.1090/S0002-9939-96-03449-1, Proc. Amer. Math. Soc. 124 (1996), 3417–3424. (1996) Zbl0864.46028MR1342031DOI10.1090/S0002-9939-96-03449-1
  17. 10.2140/pjm.1992.152.323, Pacific. Math. J. 152 (1992), 323–336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
  18. An Introduction to Local Spectral Theory, Clarendon, Oxford, 2000. (2000) MR1747914
  19. 10.1007/BF01351564, Math. Ann. 184 (1970), 197–214. (1970) Zbl0177.17102MR0259644DOI10.1007/BF01351564
  20. 10.1017/S0017089500006807, Glasgow Math. J. 29 (1987), 159–175. (1987) Zbl0657.47038MR0901662DOI10.1017/S0017089500006807
  21. Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69–105. (1989) Zbl0694.47002MR1002122
  22. 10.4064/sm-119-2-129-147, Studia Math. 119 (1996), 129–147. (1996) MR1391472DOI10.4064/sm-119-2-129-147
  23. 10.4064/sm163-1-5, Studia Math. 163 (2004), 85–101. (2004) MR2047466DOI10.4064/sm163-1-5
  24. On the essential approximate point spectrum II, Mat. Vesnik 36 (1984), 89–97. (1984) MR0880647
  25. 10.1017/S0017089500006509, Glasgow Math. J. 28 (1986), 193–198. (1986) MR0848425DOI10.1017/S0017089500006509
  26. Operators obeying a -Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. (1989) MR1030982
  27. 10.1007/BF03019655, Rend. Circ. Mat. Palermo 27 (1909), 373–392. (1909) DOI10.1007/BF03019655
  28. A note on generalized Weyl’s theorem, J. Math. Anal. Appl. 324 (2006), 992–1005. (2006) Zbl1101.47002MR2201769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.