A note on the -Browder’s and -Weyl’s theorems
Mathematica Bohemica (2008)
- Volume: 133, Issue: 2, page 157-166
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAmouch, M., and Zguitti, H.. "A note on the $a$-Browder’s and $a$-Weyl’s theorems." Mathematica Bohemica 133.2 (2008): 157-166. <http://eudml.org/doc/250520>.
@article{Amouch2008,
abstract = {Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.},
author = {Amouch, M., Zguitti, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property; B-Fredholm operator; Weyl's theorem; operator of Kato type; single-valued extension property (SVEP)},
language = {eng},
number = {2},
pages = {157-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the $a$-Browder’s and $a$-Weyl’s theorems},
url = {http://eudml.org/doc/250520},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Amouch, M.
AU - Zguitti, H.
TI - A note on the $a$-Browder’s and $a$-Weyl’s theorems
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 2
SP - 157
EP - 166
AB - Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.
LA - eng
KW - B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property; B-Fredholm operator; Weyl's theorem; operator of Kato type; single-valued extension property (SVEP)
UR - http://eudml.org/doc/250520
ER -
References
top- Fredholm Theory and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004. (2004) MR2070395
- 10.1006/jmaa.2000.6966, J. Math. Anal. Appl. 250 (2000), 435–448. (2000) MR1786074DOI10.1006/jmaa.2000.6966
- 10.1016/j.jmaa.2006.03.085, J. Math. Anal. Appl. 326 (2007), 1476–1484. (2007) Zbl1117.47007MR2280999DOI10.1016/j.jmaa.2006.03.085
- Generalized -Weyl’s theorem and the single-valued extension property, Extracta. Math. 21 (2006), 51–65. (2006) Zbl1123.47005MR2258341
- 10.1017/S0017089505002971, Glasgow Math. J. 48 (2006), 179–185. (2006) MR2224938DOI10.1017/S0017089505002971
- Single valued extension property and generalized Weyl’s theorem, Math. Bohem. 131 (2006), 29–38. (2006) MR2211001
- 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291–302. (2004) MR2041251DOI10.1017/S144678870000896X
- Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376. (2003) MR1991673
- On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465. (2001) MR1878588
- 10.1017/S0017089500030147, Glasgow Math. J. 42 (2000), 479–486. (2000) MR1793814DOI10.1017/S0017089500030147
- Hereditarily normaloid operators, Extracta Math. 20 (2005), 203–217. (2005) Zbl1160.47301MR2195202
- 10.2140/pjm.1975.58.61, Pacific J. Math. 58 (1975), 61–69. (1975) Zbl0315.47002MR0374985DOI10.2140/pjm.1975.58.61
- 10.2969/jmsj/03420317, J. Math. Soc. Japan 34 (1982), 317–337. (1982) Zbl0477.47013MR0651274DOI10.2969/jmsj/03420317
- 10.1090/S0002-9939-00-05741-5, Proc. Amer. Math. Soc. 128 (2000), 2291–2296. (2000) MR1756089DOI10.1090/S0002-9939-00-05741-5
- 10.1006/jmaa.2001.7448, J. Math. Anal. Appl. 260 (2001), 200–213. (2001) MR1843976DOI10.1006/jmaa.2001.7448
- 10.1090/S0002-9939-96-03449-1, Proc. Amer. Math. Soc. 124 (1996), 3417–3424. (1996) Zbl0864.46028MR1342031DOI10.1090/S0002-9939-96-03449-1
- 10.2140/pjm.1992.152.323, Pacific. Math. J. 152 (1992), 323–336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
- An Introduction to Local Spectral Theory, Clarendon, Oxford, 2000. (2000) MR1747914
- 10.1007/BF01351564, Math. Ann. 184 (1970), 197–214. (1970) Zbl0177.17102MR0259644DOI10.1007/BF01351564
- 10.1017/S0017089500006807, Glasgow Math. J. 29 (1987), 159–175. (1987) Zbl0657.47038MR0901662DOI10.1017/S0017089500006807
- Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69–105. (1989) Zbl0694.47002MR1002122
- 10.4064/sm-119-2-129-147, Studia Math. 119 (1996), 129–147. (1996) MR1391472DOI10.4064/sm-119-2-129-147
- 10.4064/sm163-1-5, Studia Math. 163 (2004), 85–101. (2004) MR2047466DOI10.4064/sm163-1-5
- On the essential approximate point spectrum II, Mat. Vesnik 36 (1984), 89–97. (1984) MR0880647
- 10.1017/S0017089500006509, Glasgow Math. J. 28 (1986), 193–198. (1986) MR0848425DOI10.1017/S0017089500006509
- Operators obeying -Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. (1989) MR1030982
- 10.1007/BF03019655, Rend. Circ. Mat. Palermo 27 (1909), 373–392. (1909) DOI10.1007/BF03019655
- A note on generalized Weyl’s theorem, J. Math. Anal. Appl. 324 (2006), 992–1005. (2006) Zbl1101.47002MR2201769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.