A note on the index of B -Fredholm operators

M. Berkani; Dagmar Medková

Mathematica Bohemica (2004)

  • Volume: 129, Issue: 2, page 177-180
  • ISSN: 0862-7959

Abstract

top
From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251–257] we know that if S , T are commuting B -Fredholm operators acting on a Banach space X , then S T is a B -Fredholm operator. In this note we show that in general we do not have error ( S T ) = error ( S ) + error ( T ) , contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717–1723]. However, if there exist U , V L ( X ) such that S , T , U , V are commuting and U S + V T = I , then error ( S T ) = error ( S ) + error ( T ) , where error stands for the index of a B -Fredholm operator.

How to cite

top

Berkani, M., and Medková, Dagmar. "A note on the index of $B$-Fredholm operators." Mathematica Bohemica 129.2 (2004): 177-180. <http://eudml.org/doc/249390>.

@article{Berkani2004,
abstract = {From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251–257] we know that if $S$, $ T$ are commuting $B$-Fredholm operators acting on a Banach space $X$, then $ST$ is a $B$-Fredholm operator. In this note we show that in general we do not have $\operatorname\{\text\{ind\}\}(ST)= \operatorname\{\text\{ind\}\}(S) +\operatorname\{\text\{ind\}\}(T)$, contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717–1723]. However, if there exist $ U, V \in L(X) $ such that $S$, $T$, $U$, $V$ are commuting and $ US+ VT= I$, then $\operatorname\{\text\{ind\}\}(ST)= \operatorname\{\text\{ind\}\}(S)+\operatorname\{\text\{ind\}\}(T)$, where $\operatorname\{\text\{ind\}\}$ stands for the index of a $B$-Fredholm operator.},
author = {Berkani, M., Medková, Dagmar},
journal = {Mathematica Bohemica},
keywords = {$B$-Fredholm operators; index of the product of Fredholm operators; -Fredholm operators; index of the product of Fredholm operators},
language = {eng},
number = {2},
pages = {177-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the index of $B$-Fredholm operators},
url = {http://eudml.org/doc/249390},
volume = {129},
year = {2004},
}

TY - JOUR
AU - Berkani, M.
AU - Medková, Dagmar
TI - A note on the index of $B$-Fredholm operators
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 2
SP - 177
EP - 180
AB - From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251–257] we know that if $S$, $ T$ are commuting $B$-Fredholm operators acting on a Banach space $X$, then $ST$ is a $B$-Fredholm operator. In this note we show that in general we do not have $\operatorname{\text{ind}}(ST)= \operatorname{\text{ind}}(S) +\operatorname{\text{ind}}(T)$, contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717–1723]. However, if there exist $ U, V \in L(X) $ such that $S$, $T$, $U$, $V$ are commuting and $ US+ VT= I$, then $\operatorname{\text{ind}}(ST)= \operatorname{\text{ind}}(S)+\operatorname{\text{ind}}(T)$, where $\operatorname{\text{ind}}$ stands for the index of a $B$-Fredholm operator.
LA - eng
KW - $B$-Fredholm operators; index of the product of Fredholm operators; -Fredholm operators; index of the product of Fredholm operators
UR - http://eudml.org/doc/249390
ER -

References

top
  1. 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244–249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
  2. 10.4064/sm-140-2-163-175, Stud. Math. 140 (2000), 163–175. (2000) Zbl0978.47011MR1784630DOI10.4064/sm-140-2-163-175
  3. 10.1090/S0002-9939-01-06291-8, Proc. Amer. Math. Soc. 130 (2002), 1717–1723. (2002) Zbl0996.47015MR1887019DOI10.1090/S0002-9939-01-06291-8
  4. 10.1017/S0017089501030075, Glasg. Math. J. 43 (2001), 457–465. (2001) MR1878588DOI10.1017/S0017089501030075
  5. 10.4064/sm148-3-4, Stud. Math. 148 (2001), 251–257. (2001) MR1880725DOI10.4064/sm148-3-4
  6. 10.2969/jmsj/03420317, J. Math. Soc. Japan 34 (1982), 317–337. (1982) Zbl0477.47013MR0651274DOI10.2969/jmsj/03420317
  7. Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
  8. On the axiomatic theory of the spectrum, Stud. Math. 119 (1996), 109–128. (1996) MR1391471
  9. An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000. (2000) MR1747914
  10. 10.4064/sm-119-2-129-147, Stud. Math. 119 (1996), 129–147. (1996) MR1391472DOI10.4064/sm-119-2-129-147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.